www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCauchy Integralformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Cauchy Integralformel
Cauchy Integralformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Integralformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 So 13.05.2012
Autor: mathe456

Hi,

ich soll [mm] \integral_{|z| = 1} {\bruch{sin z + cos z -1}{z^{n}} dz} [/mm] berechnen.

Kann man die Cauchy Integralformel verwenden?
Mein Ansatz ist:

Sei f(w) = sin w + cos w - 1.
Dann ist

[mm] 2\pi [/mm] i*f(0) = [mm] \integral_{|z| = 1} {\bruch{f(w)}{z^n -0} dx} [/mm]

= [mm] 2\pi [/mm] i (sin 0 + cos 0 -1) = 0.





        
Bezug
Cauchy Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 13.05.2012
Autor: donquijote


> Hi,
>  
> ich soll [mm]\integral_{|z| = 1} {\bruch{sin z + cos z -1}{z^{n}} dz}[/mm]
> berechnen.
>  
> Kann man die Cauchy Integralformel verwenden?

ja

>  Mein Ansatz ist:
>  
> Sei f(w) = sin w + cos w - 1.
> Dann ist
>
> [mm]2\pi[/mm] i*f(0) = [mm]\integral_{|z| = 1} {\bruch{f(w)}{z^n -0} dx}[/mm]

Im Nenner steht [mm] z^n. [/mm] Das bedeutet, dass auf der linken Seite [mm] \frac{2\pi i}{(n-1)!}*f^{(n-1)}(0) [/mm] stehen muss.
Damit musst du eine Fallunterscheidung in Abhängigkeit von n machen.

>  
> = [mm]2\pi[/mm] i (sin 0 + cos 0 -1) = 0.
>  
>
>
>  


Bezug
                
Bezug
Cauchy Integralformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 So 13.05.2012
Autor: mathe456

Danke für die Antwort!

Dann heißt die Formel ja

[mm] \bruch{2\pi i}{(n-1)!} f^{n-1} [/mm] (z) = [mm] \integral_{}{}{\bruch{f(w)}{(w-z)^n} dw} [/mm]

Dann muss man folgende Fälle unterscheiden, sei m [mm] \in \IN [/mm] :
Fall 1: Für n=1: [mm] f^{n-1} [/mm] = sin z + cos z -1
Fall 2: Für n=4m+2  : [mm] f^{n-1} [/mm] = cos z -sin z
Fall 3: Für n=4m+3 : [mm] f^{n-1} [/mm] = -sin z - cos z
Fall 4: Für n =4m+4 : [mm] f^{n-1} [/mm] = -cos z + sin z
Fall 5: Für n =4m+1 : [mm] f^{n-1}= [/mm] sin z + cos z          

Ergebnisse durch einsetzen:
Fall 1: 0
Fall 2: [mm] \bruch{2\pi i}{(4m+1)!} [/mm]
Fall 3: [mm] \bruch{-2\pi i}{(4m+2)!} [/mm]
Fall 4:  [mm] \bruch{-2\pi i}{(4m+3)!} [/mm]
Fall 5:  [mm] \bruch{2\pi i}{(4m)!} [/mm]

Stimmt das?





Bezug
                        
Bezug
Cauchy Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 13.05.2012
Autor: donquijote


> Danke für die Antwort!
>  
> Dann heißt die Formel ja
>
> [mm]\bruch{2\pi i}{(n-1)!} f^{n-1}[/mm] (z) =
> [mm]\integral_{}{}{\bruch{f(w)}{(w-z)^n} dw}[/mm]
>  
> Dann muss man folgende Fälle unterscheiden, sei m [mm]\in \IN[/mm]
> :
>  Fall 1: Für n=1: [mm]f^{n-1}[/mm] = sin z + cos z -1
>  Fall 2: Für n=4m+2  : [mm]f^{n-1}[/mm] = cos z -sin z
>  Fall 3: Für n=4m+3 : [mm]f^{n-1}[/mm] = -sin z - cos z
>  Fall 4: Für n =4m+4 : [mm]f^{n-1}[/mm] = -cos z + sin z
>  Fall 5: Für n =4m+1 : [mm]f^{n-1}=[/mm] sin z + cos z          
>
> Ergebnisse durch einsetzen:
>  Fall 1: 0
>  Fall 2: [mm]\bruch{2\pi i}{(4m+1)!}[/mm]
>  Fall 3: [mm]\bruch{-2\pi i}{(4m+2)!}[/mm]
>  
> Fall 4:  [mm]\bruch{-2\pi i}{(4m+3)!}[/mm]
>  Fall 5:  [mm]\bruch{2\pi i}{(4m)!}[/mm]
>  
> Stimmt das?
>  

ja, alles richtig

>
>
>  


Bezug
                                
Bezug
Cauchy Integralformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 So 13.05.2012
Autor: mathe456

Danke!:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]