Cauchysche Integralformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:38 Sa 14.07.2007 | Autor: | TTaylor |
Aufgabe | Sei [mm] \gamma(t)=e^{it}[/mm] für t Element [mm] [0,2\pi], [/mm] sei [mm] m\ge1 [/mm] .
Berechne [mm] \integral_{\gamma} \bruch{1}{z^m},dx [/mm] unter Zuhilfenahme der Cauchy Integralformel? |
Nach Cauchy:
[mm]f^{m-1}(0) = \bruch {(m-1)!}{2 \pi* i} \integral_{\gamma}\bruch {1}{z^m},dz[/mm]
Warum bzw. wie folgt denn daraus [mm]\integral_{\gamma}\bruch{1}{z},dz=2\pi*i ???[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:09 Sa 14.07.2007 | Autor: | Hund |
Hallo,
wenn du in der Cauchy´schen Integralformel nach dem Integral umformst, erhälst du: [mm] Integral=f^{m-1}(0)\bruch{2\pi*i}{(m-1)!}.
[/mm]
Bei deinem Integral ist m=1, also folgt: [mm] Integral=2\pi*i.
[/mm]
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:35 Sa 14.07.2007 | Autor: | TTaylor |
Aufgabe | Sei [mm]\gamma_1(t) = \bruch{1}{2}e^{it} [/mm] für [mm] t\in[0,2\pi] [/mm] , sei [mm]\gamma_2(t)=1+\bruch{1}{2} e^{it} [/mm] für [mm] t\in[0,2\pi].
[/mm]
Berechne [mm]\integral_{\gamma}\bruch{e^{1-z}}{z^3*(1-z)},dz [/mm] |
Danke Hund, die vorherige Aufgabe habe ich schon mal verstanden.
Bei dieser Aufgabe verstehe ich, dass ich die Cauchy Integralformel anwenden muss:[mm] f(z)= \bruch{e^{1-z}}{1-z}[/mm]
[mm]f^2(0)= \bruch {2!}{2*\pi*i}\integral_{\gamma_1}\bruch{e^{1-z}}{z^3*(1-z)},dz}[/mm]
Somit gilt [mm]\integral_{\gamma_1}\bruch{e^{1-z}}{z^3*(1-z)},dz= e* \pi* i[/mm]
Wie komme ich da auf dieses Ergebnis???
Der zweite Teil:[mm] f(z)= \bruch{e^{1-z}}{z^3}[/mm]
Nach Cauchyscher Integralformel gilt:
[mm]f(1)= \bruch {-2!}{2*\pi*i}\integral_{\gamma_2}\bruch{e^{1-z}}{z^3*(1-z)},dz}[/mm]
Dann erhält man irgendwie [mm]\integral_{\gamma_2}\bruch{e^{1-z}}{z^3*(1-z)},dz= -2 \pi* i[/mm]
Ich verstehe einfach nicht wie ich von der Cauchyformel auf diese Ergebnisse kommen soll??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:30 Sa 14.07.2007 | Autor: | Hund |
Hallo,
nach dem Integral auflösen ergibt wieder [mm] f^{2}(0)*\pi*i=e*\pi*i [/mm] . Beim 2. funktionierts genauso. Was verstehst du denn genau nicht? Es muss doch immer nach dem Integral aufgelöst werden und dann die richtigen Werte eingesetzt werden.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|