www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCauchysche Integralsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Cauchysche Integralsatz
Cauchysche Integralsatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchysche Integralsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 09.06.2008
Autor: goldeneye

Aufgabe
Wenden Sie den Cahuchysche Integralsatz auf f(z) = [mm] e^{-z^^{2}} [/mm] und den Randumlaufsweg des Rechtecks mit den Ecken a, a+ib, -a+ib und -a für a,b > 0 an.
Zeigen Sie, dass die Beiträgen der vertikalen Seiten für [mm] a\to \infty [/mm] und b fest verschwinden, Forlgern Sie, dass gilt
[mm] \integral_{-\infty}^{\infty} e^{-t^{2}} [/mm] cos(2bt)dt= [mm] e^{-b^{2}}\wurzel{\pi} [/mm]

Hinweis: [mm] \integral_{-\infty}^{\infty} e^{-t^{2}}dt=\wurzel{\pi} [/mm] darf verwendet werden.

Hallo zusammen.
kann jemand vielleicht ein bisschen helfen und paar tipps geben das wäre nett
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Cauchysche Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 09.06.2008
Autor: fred97

Nach dem Cauchyschen Integralsatz ist das Integral von f über den Rand des Rechtecks = was ?

Spalt dann das Intgral in Real- und Imaginärteil auf und überlge was passiert, wenn a und b gegen umendlich gehen.

FRED

Bezug
                
Bezug
Cauchysche Integralsatz: Hmm, komisch
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 10.06.2008
Autor: jarjar2008

Habe mich auch mal gerade an dieser Aufgabe versucht und muss zugeben: Ich verstehe das alles irgendwie nicht so ganz.

Habe die Integralformel nachgelesen, und die sagt mir, dass das Integral komplett verschwindet.

Was könnte man denn da aufteilen?

Bezug
                        
Bezug
Cauchysche Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Mi 11.06.2008
Autor: rainerS

Hallo!

> Habe mich auch mal gerade an dieser Aufgabe versucht und
> muss zugeben: Ich verstehe das alles irgendwie nicht so
> ganz.
>  
> Habe die Integralformel nachgelesen, und die sagt mir, dass
> das Integral komplett verschwindet.

Das Integral der holomorphen Funktion [mm] $e^{-x^2}$ [/mm] über den Rand des angegebenen Rechtecks ist 0, das ist richtig.

Was ist mit den Integralen über die einzelnen Seiten?

Viele Grüße
   Rainer

Bezug
                                
Bezug
Cauchysche Integralsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:42 Mi 11.06.2008
Autor: jarjar2008

Danke für deine Antwort,

Habe überall im Skript nachgelesen und finde einfach nicht den Weg, die Integrale über die Rechtecksseiten einzeln zu berechnen.

Wäre lieb wenn du mir helfen könntest, bzw sagen könntest wo ich das Nachlesen kann...dann werden ich versuchen das Auszurechnen und Poste meine Lösung hier!

Gruss
jarjar

Bezug
                                        
Bezug
Cauchysche Integralsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Fr 13.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Cauchysche Integralsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Mi 11.06.2008
Autor: jarjar2008

Habe jetzt mal angefangen das Integral aufzusplitten:

Habe ich das bisher richtig gemacht? Siehe Bildanhang!

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Cauchysche Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mi 11.06.2008
Autor: rainerS

Hallo!

> Habe jetzt mal angefangen das Integral aufzusplitten:
>  
> Habe ich das bisher richtig gemacht? Siehe Bildanhang!

Es wäre besser, du würdest die Formeln im Formeleditor schreiben, so kann ich sie nicht zitieren.

> [Dateianhang nicht öffentlich]

Die Zerlegung in die 4 Teile ist in Ordnung, aber du setzt dann einfach das erste und das zweite Integral gleich. Das ist nicht richtig, führt auch gar nicht auf das gewünschte Ergebnis.

Schau mal hier, da habe ich es im Prinzip vorgerechnet.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Cauchysche Integralsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Do 12.06.2008
Autor: jarjar2008

Prima, habs jetzt hinbekommen!
Jetzt bleibt nur noch zu zeigen dass die gleichheit in der Aufgabe gilt, aber das sollte eigentlich ein klacks sein

Bezug
                                                        
Bezug
Cauchysche Integralsatz: rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Do 12.06.2008
Autor: jan_babayans

hi.
kannst du mir bitte deine lösung hier posten.
ich verstehe zwar den ansatz und was der rainer da erklärt aber ich weiss nicht woher in seiner lösung der vorfaktor [mm] e^{-a^{2}} [/mm] kommt.


Bezug
                                                                
Bezug
Cauchysche Integralsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Di 24.06.2008
Autor: rainerS

Hallo!

Hier ist eine vollständige Rechnung.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]