www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteCharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Charakteristisches Polynom
Charakteristisches Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Di 15.09.2009
Autor: SGAdler

Aufgabe
Gegeben sei

A = [mm] \begin{pmatrix} 1 & 1 & 1 \\ -6 & 3 & -1 \\ 6 & -2 & 2 \end{pmatrix} [/mm]

Bestimmen Sie das charakteristische Polynom von A.

Hi,

also mir ist das ganze im Prinzip schon klar, nur hab ich so meine Probleme beim Umformen um dann auf die Eigenwerte zu kommen.
Mithilfe von Sarrus komme ich z.B. auf:
[mm] -\lambda^3 [/mm] + [mm] 14\lambda^2 [/mm] - [mm] 9\lambda [/mm] + 4.

Aber es fällt mir sehr schwer, bzw. ohne Lösung krieg ich es gar nicht hin, davon dann auf [mm] (\lambda-4)(1-\lambda)^2 [/mm] zu kommen.
Gibt's da irgendwelche Tricks, wie man das am besten macht?

Gruß

        
Bezug
Charakteristisches Polynom: Polynomdivision
Status: (Antwort) fertig Status 
Datum: 18:46 Di 15.09.2009
Autor: barsch

Hallo,

ich habe als charakteristisches Polynom:

[mm] \lambda^3-6\lambda^2+9\lambda-4 [/mm]

Hat []"er hier" auch gesagt ;-)

Aber zu deinem eigentlichen Anliegen. Du wirst, wie aus der Schule bekannt, eine Nullstelle suchen und dann Polynomdivision anwenden müssen. Das Raten der Nullstelle ist aber hier nicht so aufwändig, da nach Ausschluss der 0, die 1 gleich ein "Treffer" ist.

Gruß
barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]