Comptoneffekt < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:22 Di 21.08.2007 | Autor: | oli_k |
Hallo,
ich komme einfach nicht mehr weiter, ebenso wie meine Lehrerin. Würde mich über eine Antwort sehr freuen!
Zuerst die Bezeichnungen:
$W$ - Energie des Photons vor dem Stoss
$W'$ - Energie des Photons nach dem Stoss
[mm] $W_e$ [/mm] - Energie des Elektrons vor dem Stoss
$W'_e$ - Energie des Elektrons nach dem Stoss
Ohne eine Ahnung zu haben, würde ich nach dem Energieerhaltungssatz zunächst
[mm] W+W_e=W'+W'_e [/mm] (I)
aufstellen.
Desweiteren würde ich
[mm] W_e=m_e*c²=const\not=0 [/mm] (II)
definieren.
Nun zur Aufgabe.
Die Photonen sollen in Compton-Wellenlänge eintreffen, also
[mm] $W=W_e$ [/mm] (III)
Nun kann ich (I) auch als
$2W=W'+W'_e$ (IV)
schreiben.
Also ist nach (IV) die Energie des Elektrons nach dem Stoss gleich seiner Ruhemass plus seiner vom Photon aufgenommenen Energie, also
$W'_e=2W-W'$ (V)
Umgeformt zu
[mm] \bruch{W'_e}{W_e}=2-\bruch{W'}{W_e} [/mm] (VI)
kann ich nun das Verhältnis der Energie des Elektrons nach dem Stoss zur Energie des Elektrons vor dem Stoss berechnen (dazu später mehr). [mm] \bruch{W'}{W_e} [/mm] erhalte ich ja mit der gegebenen Formel
[mm] \bruch{W'}{W_e}=\bruch{1}{\bruch{W_e}{W}+1-\cos(ny)}=\bruch{1}{2-\cos(ny)} [/mm] (VII)
Im Beispiel ny=90° wäre [mm] \bruch{W'}{W_e} [/mm] also 1/2. Dies ergibt Sinn, nach dem Stoss hat das Elektron also [mm] W'_e=1,5*W_e, [/mm] das Photon [mm] W'=0,5*W_e, [/mm] was nach (IV) perfekt passt und den Energieerhaltungssatz erfüllt, da nur ein Teil der Photonenenergie auf das Elektron übertragen wurde. Einen weiteren Beweis für die halbierte Energie des Photons bietet die experimentell bewiesene doppelte Wellenlänge nach dem Stoss.
Nun soll mit (VI) [mm] \bruch{W'_e}{W_e} [/mm] berechnet werden, also die Energie des Elektrons nach dem Stoss im Verhältnis zur Energie des Elektrons vor dem Stoss. Ich würde ohne Rechnung behaupten, dass dies größer als 1 sein muss, da doch Energie AUFGENOMMEN wird, also [mm] W'_e>W_e. [/mm] Da $W'<W$ muss die freigewordene Energie schliesslich irgendwo hin! Ich setze also [mm] \bruch{W'}{W_e}=1/2 [/mm] in (VI) ein und erhalte [mm] \bruch{W'_e}{W_e}=3/2 [/mm] - was für mich wiederum Sinn ergibt.
...doch nun kam das Lösungsbuch :(
Dieses setzt dann einfach mal
$W=W'+W'_e$
- doch wo ist [mm] W_e [/mm] geblieben? Wir haben doch nach (II) schon festgestellt, dass [mm] W_e [/mm] definitiv NICHT 0 ist und somit nicht einfach vernachlässigbar ist!
Im weiteren Verlauf kommen die dann auch auf
[mm] \bruch{W'_e}{W_e}=1-\bruch{W'}{W_e}, [/mm]
was [mm] \bruch{W'_e}{W_e}=1/2 [/mm] ergibt.
Deren Meinung nach soll also für 90°
[mm] \bruch{W'}{W_e}=\bruch{W'_e}{W_e}=1/2
[/mm]
sein.
Nun stellen sich für mich folgende Fragen:
- Wie können sowohl [mm] W_e [/mm] als auch W nach dem Stoss kleiner werden?
- Wo soll die Energie hin?
und natürlich am wichtigsten:
- Wo zur Hölle ist mein Denkfehler?
Haben da 45 Minuten mit der Lehrerin drüber diskutiert, auch sie hatte keine Ahnung...
VIELEN DANK!
Oli
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Di 21.08.2007 | Autor: | rainerS |
Hallo Oli,
ohne das Lösungsbuch zu kennen vermute ich, dass ihr verschiedene Definitionen von [mm]W'_e[/mm] habt.
Der Nullpunkt der Energieskala ist nicht festgelegt. Du kannst also sagen, ich nehme die Ruheenerge [mm]m_e c^2[/mm] des Elektrons mit in die Gleichung, das ist dein Ansatz, bei dem [mm]W'_e[/mm] die Gesamtenergie des Elektrons (Ruhe- plus Bewegungsenergie) ist. Oder du kannst sagen, du betrachtest die Energie des Elektrons relativ zur Ruheenergie, dann ist [mm]W'_e[/mm] nur der Bewegungsanteil, also Gesamtenergie minus Ruheenergie.
Beide Ansätze führen zum Ziel: wenn du von deiner Anfangsgleichung
[mm]W+W_e = W'+W'_e[/mm]
[mm]W_e[/mm] subtrahierst, erhälst du:
[mm]W=W' + (W'_e -W_e) [/mm].
Der Ausdruck in der Klammer ist die Bewegungsenergie des Elektrons, die das Lösungsbuch mit [mm]W'_e[/mm] bezeichnet.
Zwischen den beiden Ansätzen liegt also eine Verschiebung der Energieskala um [mm]m_e c^2[/mm]. Du bekommst heraus, das die Gesamtenergie des Elektrons gleich [mm]\bruch{3}{2}m_e c^2[/mm] ist, das Lösungsbuch sagt, dass die Bewegungsenergie gleich [mm]\bruch{1}{2}m_e c^2[/mm] ist, also die Gesamtenergie gleich [mm]m_e c^2+\bruch{1}{2}m_e c^2=\bruch{3}{2}m_e c^2[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:48 Di 21.08.2007 | Autor: | oli_k |
Alles klar, das macht Sinn!
Wenn noch Fragen kommen, melde ich mich!
Danke,
Oli
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:50 Di 21.08.2007 | Autor: | oli_k |
Ach ne, Moment!
Hab mir gerade nochmal das Blatt durchgelesen, eine der Aufgaben vorher, war zu erklären, was [mm] W_e [/mm] ist (Lösung: Ruheenergie) und zu bestimmen, wie gross [mm] W_e [/mm] ist (Lösung: =0,52MeV) - [mm] W_e [/mm] kann also nicht nur E_kin des Elektrons sein...
Denke(n) ich/wir da noch falsch oder ist das schlicht ein Fehler in der Aufgabenstellung?
Danke
Oli
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:38 Di 21.08.2007 | Autor: | oli_k |
Ah, ja, natürlich ;)
Ok, denk, dass ich das verstanden hab!
Danke nochmals.
|
|
|
|