www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikCoulommb-Gesetz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Coulommb-Gesetz
Coulommb-Gesetz < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Coulommb-Gesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 02.10.2006
Autor: Klio

Hallo ihr,

bei folgender Frage habe ich Probleme: Nach dem Coulomb-Gesetz wird die Kraft zwischen zwei punktförmigen Ladungen unendlich groß, wenn ihr Abstand gegen Null geht, Wie verhält sich dazu im Vergleich die Kraft F auf eine Punktladung,die beliebig nahe an eine homogen geladene, unendlich ausgedehnte Schicht gebracht wird?

Vielen Dank für eure Hilfe,

liebe Grüße

Ramona

        
Bezug
Coulommb-Gesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mo 02.10.2006
Autor: Event_Horizon

Ich würde sagen, das ist genauso. Aber man kann das ganze ja mathematisch angehen.


Die Ebene sitze in der xy-Ebene, und deine Punktladung hat den Abstand h.

Die Kraft zwischen zwei Punktladungen ist  [mm] $\vec F=\bruch{qQ}{r^2}\bruch{\vec r}{|r|}$ [/mm] (die Konstanten mal weg gelassen)

Jetzt schaut man sich mal ein winziges Stück $dxdy$ der Ebene an.

Wir nehmen eine Ladungsdichte [mm] \rho [/mm] dazu, dann hat das Stück die Ladung [mm] $\rho [/mm] dxdy$

Das Stück dxdy ist an der Position (x;y;0). Somit ist der Abstand zur Punktladung [mm] \wurzel{x^2+y^2+h^2} [/mm]


Macht eine Kraft von  [mm] $F=\bruch{q\rho}{x^2+y^2+h^2}\bruch{\vec r}{|r|}dxdy$ [/mm]

Kümmern wir uns um den vektoriellen Teil: [mm] \bruch{\vec r}{|r|} [/mm] ist ja ein Richtungsvektor. Die Komponente in z-Richtung (die anderen heben sich weg) läßt sich schreiben als [mm] \bruch{h}{\wurzel{x^2+y^2+h^2}} [/mm]

Alles zusammen:

[mm] $F=\bruch{q\rho h}{{(x^2+y^2+h^2)}^{3/2}}dxdy$ [/mm]

DAs Ding müssern wir jetzt über die Fläche integrieren, um die Gesamtkraft zu erhalten:

[mm] $F_{ges}=\integral \integral \bruch{q\rho h}{{(x^2+y^2+h^2)}^{3/2}}dxdy$ [/mm]

Gehen wir zu Polarkoordinaten über:

[mm] $F_{ges}=\integral \integral \bruch{q\rho h}{{(r^2+h^2)}^{3/2}} [/mm] r [mm] d\phi [/mm] dr$

[mm] $F_{ges}=2\pi \integral \bruch{q\rho h}{{(r^2+h^2)}^{3/2}} [/mm] r  dr$

Verzeih, daß ich an dieser Stelle mal den Computer rechnen lasse...

[mm] $F_{ges}=-2\pi q\rho \left[ \bruch{1}{\wurzel{r^2+h^2}} \right]_0^\infty= \bruch{2\pi q\rho}{{h}}$ [/mm]

Demnach gibt es eine 1/h-Abhängigkeit, und demnach auch eine unendlich hohe Kraft bei unendlicher Annäherung.




(Tschuldigung, ich hatte grade spaß...)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]