www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 29.05.2010
Autor: BRuce

Aufgabe 1
[mm] y'=(x+y+1)^2 [/mm]

Aufgabe 2
[mm] x^2y'=(1/4)x^2+y^2 [/mm]

Hi zusammen, bin mach grad n paar Aufgaben Integration durch Substitution. lin.DGL 1. Ordnung. Und irgendwie hab ich immer Probleme beim letzten Schritt beim Integrieren.

bei Aufgabe eins habe ich u=(x+y+1) gewählt, und in unsere schöne Formel mit
Integral dx/x = Integral du/f(u)-u
eingesetzt:
Integral dx/x = Integral [mm] du/u^2-u,so [/mm] aber wie mache ich jetzt am geschicktesten weiter, wie integrier ich die rechte seite am effektivsten, hat da wer ne Idee für mich, das gleich bei Aufagbe 2:
Integral dx/x = Integral [mm] du/4+u^2-u; [/mm]
(mit u= y/x)

Habs zwar schon in Wolfram Alpha eingegeben, aber da kommt nur n Ellenlangerausrduck ...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Sa 29.05.2010
Autor: Martinius

Hallo,

> [mm]y'=(x+y+1)^2[/mm]
>  [mm]x^2y'=(1/4)x^2+y^2[/mm]
>  Hi zusammen, bin mach grad n paar Aufgaben Integration
> durch Substitution. lin.DGL 1. Ordnung. Und irgendwie hab
> ich immer Probleme beim letzten Schritt beim Integrieren.
>  
> bei Aufgabe eins habe ich u=(x+y+1) gewählt, und in unsere
> schöne Formel mit
>  Integral dx/x = Integral du/f(u)-u
>  eingesetzt:
>  Integral dx/x = Integral [mm]du/u^2-u,so[/mm] aber wie mache ich
> jetzt am geschicktesten weiter, wie integrier ich die
> rechte seite am effektivsten, hat da wer ne Idee für mich,


[mm] y'=(x+y+1)^2 [/mm]

u=x+y+1

y'=u'-1

[mm] u'-1=u^2 [/mm]

[mm] u'=u^2+1 [/mm]

[mm] \int \bruch{1}{u^2+1}=\int [/mm] dx

arctan(u)=x+C

u=tan(x+C)

x+1+y=tan(x+C)

y(x)=tan(x+C)-x-1

Prüfe durch Einsetzen in die DGL auf Richtigkeit.




> das gleich bei Aufagbe 2:
>  Integral dx/x = Integral [mm]du/4+u^2-u;[/mm]
> (mit u= y/x)
>  
> Habs zwar schon in Wolfram Alpha eingegeben, aber da kommt
> nur n Ellenlangerausrduck ...



[mm] x^2*y'=\bruch{1}{4}x^2+y^2 [/mm]

[mm] y'=\bruch{1}{4}+\bruch{y^2}{x^2} [/mm]

[mm] u=\bruch{y}{x} [/mm]

[mm] \bruch{du}{dx}=\bruch{xy'-y}{x^2} [/mm]

[mm] x^2*u'=xy'-y [/mm]

[mm] xy'=x^2*u'+y [/mm]

y'=x*u'+u


[mm] xu'+u=\bruch{1}{4}+u^2 [/mm]

[mm] xu'=u^2-u+\bruch{1}{4} [/mm]

[mm] \int \bruch{1}{u^2-u+0,25}du=\int \bruch{1}{x}dx [/mm]


[mm] \int \bruch{1}{(u-0,5)^2}du=\int \bruch{1}{x}dx [/mm]

[mm] \bruch{-1}{u-0,5}=ln|x|+C [/mm]

[mm] u-\bruch{1}{2}=\bruch{-1}{ln|x|+C} [/mm]

[mm] y=\bruch{-x}{ln|x|+C}+\bruch{x}{2} [/mm]


Prüfe durch Ableiten und Einsetzen in die DGL auf Richtigkeit.
  

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]