www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 2. Grad inhomogen, VdK
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - DGL 2. Grad inhomogen, VdK
DGL 2. Grad inhomogen, VdK < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. Grad inhomogen, VdK: Hilfe bei Lösung mit VdK
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 21.12.2009
Autor: alexismichael

Aufgabe
Bestimmen Sie alle (reellen) Lösungen der DGL y''+y'+y = cos x.

Finden Sie dabei die Lösung der inhomogenen Gleichung durch:
a) Probieren
b) Variation der Konstanten

Teil a) ist relativ einfach zu lösen: y(x)= sin x als Lösung sticht geradezu ins Auge.

Teil b) macht da mehr Probleme, wir kommen schon beim Ansatz einfach auf keinen grünen Zweig mithilfe von []diesem scheitern wir bereits bei der Festlegung von [mm] y_{2}(x). [/mm] Da die homogene Lösung unserer Meinung nach [mm] y_{h}=c_{1}*e^{-\bruch{1}{2}}*2*cos(\bruch{\wurzel{3}}{2}t) [/mm] sein müsste.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL 2. Grad inhomogen, VdK: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 21.12.2009
Autor: fred97


> Bestimmen Sie alle (reellen) Lösungen der DGL y''+y'+y =
> cos x.
>  
> Finden Sie dabei die Lösung der inhomogenen Gleichung
> durch:
>  a) Probieren
>  b) Variation der Konstanten
>  Teil a) ist relativ einfach zu lösen: y(x)= sin x als
> Lösung sticht geradezu ins Auge.
>  
> Teil b) macht da mehr Probleme, wir kommen schon beim
> Ansatz einfach auf keinen grünen Zweig mithilfe von
> []diesem
> scheitern wir bereits bei der Festlegung von [mm]y_{2}(x).[/mm] Da
> die homogene Lösung unserer Meinung nach
> [mm]y_{h}=c_{1}*e^{-\bruch{1}{2}}*2*cos(\bruch{\wurzel{3}}{2}t)[/mm]
> sein müsste.


Die allgemeine Lösung der homogenen Gleichung lautet:

[mm]y_{h}=c_{1}*e^{-\bruch{1}{2}t}cos(\bruch{\wurzel{3}}{2}t)+c_{2}*e^{-\bruch{1}{2}t}sin(\bruch{\wurzel{3}}{2}t)[/mm]

FRED

          

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
DGL 2. Grad inhomogen, VdK: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Di 22.12.2009
Autor: alexismichael


> Die allgemeine Lösung der homogenen Gleichung lautet:
>  
> [mm]y_{h}=c_{1}*e^{-\bruch{1}{2}t}cos(\bruch{\wurzel{3}}{2}t)+c_{2}*e^{-\bruch{1}{2}t}sin(\bruch{\wurzel{3}}{2}t)[/mm]
>  
> FRED

Und genau damit stellt sich das erste Problem:

Die Lösung des charakteristischen Polynoms lautet doch [mm] \lambda_{1,2}=-\bruch{1}{2}\pm\wurzel{-\bruch{3}{4}} [/mm] also lautet [mm] y_{1}=e^{-\bruch{1}{2}+\wurzel{-\bruch{3}{4}}}=e^{-\bruch{1}{2}+\wurzel{\bruch{3}{4}}i}=e^{-\bruch{1}{2}}*e^{\wurzel{\bruch{3}{4}}i} [/mm] und [mm] y_{2}=e^{-\bruch{1}{2}-\wurzel{-\bruch{3}{4}}}=e^{-\bruch{1}{2}-\wurzel{\bruch{3}{4}}i}=e^{-\bruch{1}{2}}*e^{-\wurzel{\bruch{3}{4}}i} [/mm] .

Nun gilt ja [mm] e^{ki}=cos{k}+i*sin{k} \Rightarrow [/mm]

[mm] y_{1}=e^{-\bruch{1}{2}}*(cos{\wurzel{\bruch{3}{4}}}+i*sin{\wurzel{\bruch{3}{4}}}) [/mm] und
[mm] y_{2}=e^{-\bruch{1}{2}}*(cos{-\wurzel{\bruch{3}{4}}}+i*sin{-\wurzel{\bruch{3}{4}}}) [/mm]
Nach Anwendung der Symmetrieeigenschaften von sin und cos gilt:
[mm] y_{2}=e^{-\bruch{1}{2}}*(cos{\wurzel{\bruch{3}{4}}}-i*sin{\wurzel{\bruch{3}{4}}}) [/mm]

Wie kommt man nun von hier auf die am Anfang genannte Funktion? Stehen wir einfach auf dem Schlauch oder gibt es einen Trick?

Bezug
                        
Bezug
DGL 2. Grad inhomogen, VdK: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 25.12.2009
Autor: MathePower

Hallo alexismichael,

> > Die allgemeine Lösung der homogenen Gleichung lautet:
>  >  
> >
> [mm]y_{h}=c_{1}*e^{-\bruch{1}{2}t}cos(\bruch{\wurzel{3}}{2}t)+c_{2}*e^{-\bruch{1}{2}t}sin(\bruch{\wurzel{3}}{2}t)[/mm]
>  >  
> > FRED
>  
> Und genau damit stellt sich das erste Problem:
>  
> Die Lösung des charakteristischen Polynoms lautet doch
> [mm]\lambda_{1,2}=-\bruch{1}{2}\pm\wurzel{-\bruch{3}{4}}[/mm] also
> lautet
> [mm]y_{1}=e^{-\bruch{1}{2}+\wurzel{-\bruch{3}{4}}}=e^{-\bruch{1}{2}+\wurzel{\bruch{3}{4}}i}=e^{-\bruch{1}{2}}*e^{\wurzel{\bruch{3}{4}}i}[/mm]
> und
> [mm]y_{2}=e^{-\bruch{1}{2}-\wurzel{-\bruch{3}{4}}}=e^{-\bruch{1}{2}-\wurzel{\bruch{3}{4}}i}=e^{-\bruch{1}{2}}*e^{-\wurzel{\bruch{3}{4}}i}[/mm]
> .
>  
> Nun gilt ja [mm]e^{ki}=cos{k}+i*sin{k} \Rightarrow[/mm]
>  
> [mm]y_{1}=e^{-\bruch{1}{2}}*(cos{\wurzel{\bruch{3}{4}}}+i*sin{\wurzel{\bruch{3}{4}}})[/mm]
> und
>  
> [mm]y_{2}=e^{-\bruch{1}{2}}*(cos{-\wurzel{\bruch{3}{4}}}+i*sin{-\wurzel{\bruch{3}{4}}})[/mm]
>  Nach Anwendung der Symmetrieeigenschaften von sin und cos
> gilt:
>  
> [mm]y_{2}=e^{-\bruch{1}{2}}*(cos{\wurzel{\bruch{3}{4}}}-i*sin{\wurzel{\bruch{3}{4}}})[/mm]
>  
> Wie kommt man nun von hier auf die am Anfang genannte
> Funktion? Stehen wir einfach auf dem Schlauch oder gibt es
> einen Trick?


Nun, die allgemeine Lösung der homogenen DGL ergibt sich zu:

[mm]y_{h}\left(x\right)=c_{1}*e^{\lambda_{1}*x}+c_{2}*e^{\lambda_{2}*x}[/mm]

mit [mm]\lambda_{2}=\overline{\lambda_{1}}, \ \lambda_{1} \not= \lambda_{2}, \ \lambda_{1}, \lambda_{2} \in \IC[/mm]

Dies ist die komplexe Lösung der homogenen DGL.

Um auf eine reelle Lösung zu kommen,
werden die Konstanten [mm]c_{1}, \ c_{2}[/mm] so gewählt, daß

[mm]c_{1}+c_{2} \in \IR[/mm]

[mm]i*\left(c_{1}-c_{2}\right) \in \IR[/mm]

Dies ist nur möglich, wenn [mm]c_{2}=\overline{c_{1}}[/mm] gewählt wird.

Dann ergibt sich die reelle Lösung zu:

[mm]y_{h}\left(x\right)=k_{1}*e^{\left(\operatorname{Re}\lambda_{1}\right)*x}*\cos\left( \ \left(\operatorname{Im}\lambda_{1}\right)*x \ \right)+k_{2}*e^{\left(\operatorname{Re}\lambda_{1}\right)*x}*\sin\left( \ \left(\operatorname{Im}\lambda_{1}\right)*x \ \right)[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]