www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 2. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - DGL 2. Ordnung
DGL 2. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. Ordnung: Lösungsbestätigung gesucht
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 13.10.2005
Autor: shelter

Hallo

Habe folgende DGL mit Laplace Transformation und "normal" gelöst aber 2 verschiedene Ergebnisse.

4y''+12y'+9y=0  y(0)=2; y'(0)=-3

Beim lösen mit Laplace habe ich einmal eine Tabelle benutzt mit dem Ergebnis:  2 [mm] e^{- \bruch{3}{2}t} [/mm]

und einmal über Partialbruchzerlegung und danach eine Tabelle benutzt mit dem Ergebnis statt einer 2 eine 8.

Um dann das Ergebnis noch mal zu prüfen, hab ich die DGL normal gelöst und wieder 2 als Ergebnis bekommen.

Kann bitte jemand das mal nachrechnen und mir sagen was denn nun stimmt?

Vielen Dank
Gruß shelter

        
Bezug
DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Do 13.10.2005
Autor: taura

Hallo shelter!

> Habe folgende DGL mit Laplace Transformation und "normal"
> gelöst aber 2 verschiedene Ergebnisse.
>  
> 4y''+12y'+9y=0  y(0)=2; y'(0)=-3
>  
> Beim lösen mit Laplace habe ich einmal eine Tabelle benutzt
> mit dem Ergebnis:  2 [mm]e^{- \bruch{3}{2}t}[/mm]
>  
> und einmal über Partialbruchzerlegung und danach eine
> Tabelle benutzt mit dem Ergebnis statt einer 2 eine 8.
>  
> Um dann das Ergebnis noch mal zu prüfen, hab ich die DGL
> normal gelöst und wieder 2 als Ergebnis bekommen.
>
> Kann bitte jemand das mal nachrechnen und mir sagen was
> denn nun stimmt?

Das schöne an DGLs ist ja, dass du deine Lösung in die Gleichung einsetzen kannst, und wenn die Gleichung dann stimmt, ist die Wahrscheinlichkeit gut, dass deine Lösung richtig ist! ;-) In diesem Fall löst sowohl deine Lösung mit der 2 alsauch die mit der 8 die DGL, allerdings erfüllt nur die mit der 2 die beiden Anfangsbedingungen y(0)=2 und y'(0)=-3. Also ist das die gesuchte Lösung.

Gruß taura

Bezug
                
Bezug
DGL 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:04 Fr 14.10.2005
Autor: shelter

Hallo

Danke Taura.

Habe es auch nochmal kontrolliert und mit Matlab nachgerechnet. Habe bei der Lösung mit 8 ... einen Rechenfehler gemacht/gefunden.

Gruß shelter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]