www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenDGL Lösung abhä. v. Anfangsbe.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentialgleichungen" - DGL Lösung abhä. v. Anfangsbe.
DGL Lösung abhä. v. Anfangsbe. < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Lösung abhä. v. Anfangsbe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 01.04.2012
Autor: qsxqsx

Hallo,

Wolframalpha.com ergibt mir für die Differentialgleichung [mm] \bruch{dx(t)}{dt} [/mm] = c - [mm] x(t)^{2} [/mm] folgende Lösung: x(t) = [mm] \wurzel{c}*tanh(\wurzel{c}*(k [/mm] + t)), wobei k eine Konstante ist.
Nun gilt dies aber meines erachtens nur, falls |x(t)| immer (für alle t) kleiner als [mm] \wurzel{c} [/mm] ist. Wie sieht denn die Lösung aus wenn x(0) z.B. gleich -1000 ist? Dann wird x immer negativer werden!
Und überhaupt: Wieso kann eine Lösung je nach anfangsbediung variieren?

Danke.

Liebe Grüsse

        
Bezug
DGL Lösung abhä. v. Anfangsbe.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 01.04.2012
Autor: leduart

Hallo
1. die Lösung einer dgl ist immer von der Anfangsbedingung abhängig!
2. es gibt Dgl wo die Lösung zu gegebener AW eindeutig ist und andere!
deine Dgl hat ausser der angegebenen Llösung für [mm] c\ge [/mm] 0 noch die lösung [mm] x(t)=\sqrt{c} [/mm]
hier ein paar Lös¨ngen zu c=4 die geraden liegen bei [mm] \pm [/mm] 2

[Dateianhang nicht öffentlich]
Gruss leduart

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
DGL Lösung abhä. v. Anfangsbe.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:20 Di 03.04.2012
Autor: qsxqsx

Danke sehr! Schöner plot.

Weiss vielleicht jemand noch wie man die Andere Lösung findet?

Grüsse

Bezug
                        
Bezug
DGL Lösung abhä. v. Anfangsbe.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 03.04.2012
Autor: leduart

Hallo
ich hab dir doch die anderen lösg genannt? hast du denn Anfangsbed?
gruss leduart

Bezug
                                
Bezug
DGL Lösung abhä. v. Anfangsbe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 03.04.2012
Autor: qsxqsx

Ich meine die Lösung für x(t) > [mm] \wurzel{c} [/mm] ...? Die welche von oben (unendlich) nach unten kommen bzw. von unten (minus unendlich) nach oben laufen?

Gruss an Leduart

Bezug
                                        
Bezug
DGL Lösung abhä. v. Anfangsbe.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 03.04.2012
Autor: MathePower

Hallo qsxqsx,

> Ich meine die Lösung für x(t) > [mm]\wurzel{c}[/mm] ...? Die
> welche von oben (unendlich) nach unten kommen bzw. von
> unten (minus unendlich) nach oben laufen?
>  

Nun, dann lautet die Lösung für c > 0:

[mm]x(t) = \wurzel{c}\cdot{}\blue{\coth}(\wurzel{c}\cdot{}(k $ + t))[/mm]


> Gruss an Leduart


Gruss
MathePower

Bezug
                                                
Bezug
DGL Lösung abhä. v. Anfangsbe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 05.04.2012
Autor: qsxqsx

Danke dir!

Sagmal hast du das irendwie logisch geschlussfolgert, dass die andere Funktion einfach coth(x) ist bzw. 1/tanh(x) ?!

Gruss

Bezug
                                                        
Bezug
DGL Lösung abhä. v. Anfangsbe.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Fr 06.04.2012
Autor: leduart

Hallo
sieh dir mal die Ableitung von arcoth(x) an
Gruss leduart

Bezug
                                                                
Bezug
DGL Lösung abhä. v. Anfangsbe.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:08 Di 10.04.2012
Autor: qsxqsx

Ja aber mann muss es vorher wissen wie die Ableitung aussieht...:(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]