www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit Zusatzbedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Zusatzbedingung
DGL mit Zusatzbedingung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Zusatzbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mo 12.02.2007
Autor: pisty

Aufgabe
Lösen Sie folgende DGL:
[mm] (x^2+1)y' [/mm] + [mm] xy^2=0 [/mm]

Zusatzbedingung: y(1)=2

wie gehe ich bei dieser Aufgabe vor?

ich brauche ja einen homogenen Teil und einen partikulären Teil.

kann mir bitte jemand einen Tipp geben?

MfG

pisty

        
Bezug
DGL mit Zusatzbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Mo 12.02.2007
Autor: moudi

Hallo pisty

Deine Differentialgleichung ist nicht linear. Deshalb gibt es nicht eine homogene Lösung und eine partikuläre Lösung. Dies gilt nur für lineare Differentialgleichungen.

Hingegen ist deine Differentialgleichung separierbar. Du kannst sie daher mit der Methode Trennung der Variablen lösen.

mfG Moudi

Bezug
                
Bezug
DGL mit Zusatzbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Di 13.02.2007
Autor: pisty

ich habe die Aufgabe gelöst, soweitt ich kann.


[mm] (x^2+1)y'+xy^2=0 [/mm]

[mm] (x^2+1)\bruch{dy}{dx}=-xy^2 [/mm]

[mm] (x^2+1)dy=-xy^2dx [/mm]

[mm] \bruch{dy}{-y^2}=\bruch{x}{x^2+1}dx [/mm]


wenn ich beide Seiten einzeln integriere erhalte ich:


[mm] \bruch{1}{y} [/mm] = [mm] \bruch{1}{2}ln|x^2+1|+c [/mm]


wie gehe ich nun weiter vor?


vielen Dank

pisty

P.S: gibt es Seite wo der allgemeine Sachverhalt noch einmal gut erklärt ist?

Bezug
                        
Bezug
DGL mit Zusatzbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Di 13.02.2007
Autor: moudi


> ich habe die Aufgabe gelöst, soweitt ich kann.
>  
>
> [mm](x^2+1)y'+xy^2=0[/mm]
>  
> [mm](x^2+1)\bruch{dy}{dx}=-xy^2[/mm]
>  
> [mm](x^2+1)dy=-xy^2dx[/mm]
>  
> [mm]\bruch{dy}{-y^2}=\bruch{x}{x^2+1}dx[/mm]
>  
>
> wenn ich beide Seiten einzeln integriere erhalte ich:
>  
>
> [mm]\bruch{1}{y}[/mm] = [mm]\bruch{1}{2}ln|x^2+1|+c[/mm]
>  
>
> wie gehe ich nun weiter vor?

Hallo pisty

Jetzt musst du nur noch nach y auflösen:

[mm] $y(x)=\frac{2}{\ln(x^2+1)+2c}=\frac{2}{\ln(x^2+1)+2c}$ [/mm]

Jetzt  kannst du noch die Anfangsbedingung y(2)=1 einsetzen und damit c bestimmen.

Bemerkung: Weil [mm] $x^2+1$ [/mm] sowieso positiv ist, kannst du den Absoluten Betrag im Logarithmus weglassen.

mfG Moudi

>  
>
> vielen Dank
>  
> pisty
>  
> P.S: gibt es Seite wo der allgemeine Sachverhalt noch
> einmal gut erklärt ist?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]