www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGLs in DGL 2. Ordnung umwande
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGLs in DGL 2. Ordnung umwande
DGLs in DGL 2. Ordnung umwande < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGLs in DGL 2. Ordnung umwande: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Fr 24.04.2009
Autor: Ines85

Aufgabe
Führen sie dieses System von DGLs von Differentialgleichungen auf eine DGL 2. ordnung zurück und lösen sie diese:
[mm] y_1'(t) [/mm] = [mm] ay_2(t) [/mm]
[mm] y_2'(t) [/mm] = [mm] by_1(t) [/mm]
Dabei sind a,b >0 und zur Zeit t=0 sind [mm] y_1(0) [/mm] = [mm] y_1 [/mm] und [mm] y_2(0) [/mm] = [mm] y_2. [/mm]  

Hallo zusammen!

Ich möchte gerne oben stehende Aufgabe bearbeiten, weiß aber leider nicht genau, wie ich die DGLs in eine DGL 2. ordnung verwandeln soll. Kann mir jemand verraten wie man so was macht?

Schon mal danke für eure Hilfe!
Liebe Grüße,
Ines

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGLs in DGL 2. Ordnung umwande: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Fr 24.04.2009
Autor: steppenhahn

Hallo!

Ohne jetzt tiefergehende Ahnung davon zu haben, würde ich die zweite Gleichung nach [mm] y_{1} [/mm] umstellen und dann in die erste einsetzen:

[mm] y_{1}(t) [/mm] = [mm] \bruch{1}{b}*y_{2}'(t) [/mm]

Jetzt in erste einsetzen:

[mm] $\left(\bruch{1}{b}*y_{2}'(t)\right)' [/mm] = [mm] a*y_{2}(t)$ [/mm]

[mm] $\gdw \bruch{1}{b}*y_{2}''(t) [/mm] = [mm] a*y_{2}(t)$ [/mm]

Viele Grüße, Stefan.

Bezug
        
Bezug
DGLs in DGL 2. Ordnung umwande: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Fr 24.04.2009
Autor: MathePower

Hallo Ines85,


[willkommenmr]


> Führen sie dieses System von DGLs von
> Differentialgleichungen auf eine DGL 2. ordnung zurück und
> lösen sie diese:
> [mm]y_1'(t)[/mm] = [mm]ay_2(t)[/mm]
>  [mm]y_2'(t)[/mm] = [mm]by_1(t)[/mm]
>  Dabei sind a,b >0 und zur Zeit t=0 sind [mm]y_1(0)[/mm] = [mm]y_1[/mm] und
> [mm]y_2(0)[/mm] = [mm]y_2.[/mm]
> Hallo zusammen!
>  
> Ich möchte gerne oben stehende Aufgabe bearbeiten, weiß
> aber leider nicht genau, wie ich die DGLs in eine DGL 2.
> ordnung verwandeln soll. Kann mir jemand verraten wie man
> so was macht?

Der Weg, den steppenhahn in diesem Artikel beschrieben hat,
ist schon der richtige.


>
> Schon mal danke für eure Hilfe!
>  Liebe Grüße,
> Ines
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
        
Bezug
DGLs in DGL 2. Ordnung umwande: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Mo 27.04.2009
Autor: Ines85

Aufgabe
Löse nun das eigentlich System von DGLs, d.h. gebe alle Lösungen an.  

Es stellt sich mir die Frage, was ist der Unterschied zwischen den beiden Aufgabenstellungen? Sind die Lösungen die ich bekomme nicht die selben?

Außerdem habe ich noch eine Frage zum Teil 1:
Wenn ich nun die DGL 2. Ordnung aufgestellt habe, dann löse ich die ja mit dem Ansatz
[mm] y_2= c_1 sin(wt_0) [/mm] + [mm] c_2 cos(wt_0) [/mm]
[mm] y_2'= wc_1cos(wt_0) [/mm] - [mm] wc_2sin(wt_0) [/mm]
[mm] y_2''= -w^2y_2 [/mm]

Nun muss ich [mm] c_1 [/mm] und [mm] c_2 [/mm] bestimmen und setzte dafür meine Anfangsbedingungen ein. Ich weiß, dass [mm] y_1(0)=y_1 [/mm] und [mm] y_2(0)=y_2 [/mm] ist.
Hier kann ich jetzt aber nur die zweite benutzen, oder?
Also setzte ich das in die erste Zeile ein und erhalte
[mm] y_2=c_1*0 [/mm] + [mm] c_2*1 [/mm]
[mm] y_2=c_2 [/mm]

Ist das richtig? Und wie komme ich jetzt an [mm] c_1? [/mm] Oder ist das beliebig?

Liebe Grüße,
Ines

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
DGLs in DGL 2. Ordnung umwande: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Di 28.04.2009
Autor: MathePower

Hallo Ines85,

> Löse nun das eigentlich System von DGLs, d.h. gebe alle
> Lösungen an.
> Es stellt sich mir die Frage, was ist der Unterschied
> zwischen den beiden Aufgabenstellungen? Sind die Lösungen
> die ich bekomme nicht die selben?


Nun, bei ersterer Aufgabenstellung sollst Du nur das Anfangswertproblem (AWP)
in eine Differentialgleichung 2. Ordnung überführen, ohne dies zu lösen.

Bei dieser Aufgabenstellung löst Du diese DGL 2. Ordnung.



>
> Außerdem habe ich noch eine Frage zum Teil 1:
> Wenn ich nun die DGL 2. Ordnung aufgestellt habe, dann löse
> ich die ja mit dem Ansatz
>  [mm]y_2= c_1 sin(wt_0)[/mm] + [mm]c_2 cos(wt_0)[/mm]
>  [mm]y_2'= wc_1cos(wt_0)[/mm] -
> [mm]wc_2sin(wt_0)[/mm]
>  [mm]y_2''= -w^2y_2[/mm]
>  


Bei einer linearen DGL (hier 2 Ordnung) mit konstanten Koeffizienten,
macht man für die Lösungen den Ansatz [mm]y=e^{\lambda t}[/mm]

Beispiel: [mm]y''=k*y[/mm]

Einsetzen in obige DGL liefert: [mm]\lambda^{2}*e^{\lambda t}=k*e^{\lambda t}[/mm]

Daraus ergeben sich die Lösungen in Abhängigkeit von k.


> Nun muss ich [mm]c_1[/mm] und [mm]c_2[/mm] bestimmen und setzte dafür meine
> Anfangsbedingungen ein. Ich weiß, dass [mm]y_1(0)=y_1[/mm] und
> [mm]y_2(0)=y_2[/mm] ist.
> Hier kann ich jetzt aber nur die zweite benutzen, oder?


Diese Anfangsbedingungen gelten für das DGL-System 1. Ordnung.

Da Du daraus eine DGL 2. Ordnung gemacht hast,
haben sich auch die Anfangsbedingungen geändert.


> Also setzte ich das in die erste Zeile ein und erhalte
>  [mm]y_2=c_1*0[/mm] + [mm]c_2*1[/mm]
>  [mm]y_2=c_2[/mm]
>  
> Ist das richtig? Und wie komme ich jetzt an [mm]c_1?[/mm] Oder ist
> das beliebig?
>
> Liebe Grüße,
> Ines
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]