www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenDarstellung kompl. Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Darstellung kompl. Zahlen
Darstellung kompl. Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung kompl. Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Mi 27.10.2010
Autor: Theoretix

Aufgabe
Skizzieren Sie die folgenden Mengen in der komplexen Ebene:

[mm] \{z \varepsilon \IC | -\alpha0 [/mm] und arg z das Argument von z bezeichnet.

Hallo,

zuerst einmal: Ich bin davon ausgegangen, Der Winkel des Vektors, der eine komplexe Zahl darstellt und der reellen Zahlenebene (Re x), hier [mm] \alpha [/mm] genannt, das Argument von z(=arg z) ist?! also arg z = [mm] \alpha [/mm] ?

Deswegen macht die Aufgabe für mich nicht so richtig Sinn....

Wenn [mm] \alpha= [/mm] Winkel von Vektor z, dann müsste ja [mm] -\alpha= [/mm] Winkel von [mm] \overline{z}, [/mm] oder?

Wäre für Tipps danbar!

Liebe Grüße

        
Bezug
Darstellung kompl. Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mi 27.10.2010
Autor: Fulla

Hallo!

> Skizzieren Sie die folgenden Mengen in der komplexen
> Ebene:
>  
> [mm]\{z \varepsilon \IC | -\alpha
> [mm]\alpha>0[/mm] und arg z das Argument von z bezeichnet.
>  Hallo,
>  
> zuerst einmal: Ich bin davon ausgegangen, Der Winkel des
> Vektors, der eine komplexe Zahl darstellt und der reellen positiven
> Zahlenebene -achse (Re x), hier [mm]\alpha[/mm] genannt, das Argument von
> z(=arg z) ist?! also arg z = [mm]\alpha[/mm] ?

Du meinst das Richtige, fomulierst es aber nicht ganz korrekt.
Du kannst es dir auch so vorstellen: Jede komplexe Zahl [mm]z=a+ib[/mm] kann man auch als [mm]z=r\ e^{i\varphi}[/mm] darstellen (mit [mm]r=|z|[/mm] und [mm]\varphi=\arg(z)[/mm], wobei [mm]\varphi<2\pi[/mm]).

> Deswegen macht die Aufgabe für mich nicht so richtig
> Sinn....

Darüber lässt sich streiten...

> Wenn [mm]\alpha=[/mm] Winkel von Vektor z, dann müsste ja [mm]-\alpha=[/mm]
> Winkel von [mm]\overline{z},[/mm] oder?

Schon. "Winkel von z" ist allerdings ziemlich unschön... Besser: "Argument von z".

> Wäre für Tipps danbar!

Mach dir eine Skizze und gib dir irgend ein [mm]\alpha[/mm] vor. Zeichne dann auch [mm]-\alpha[/mm] ein (ich meine hier Halbgeraden vom Ursprung aus, die mit der positiven reellen Achse den Winkel [mm]\alpha[/mm] bzw. [mm]-\alpha[/mm] einschließen). Deine Menge ist dann der Sektor dazwischen (ohne die Halbgeraden).


Lieben Gruß,
Fulla


Bezug
                
Bezug
Darstellung kompl. Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mi 27.10.2010
Autor: Theoretix

Danke für die rasche Antwort! Werd's mal zeichnen=)
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]