www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDarstellungsformen Ebenengl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Darstellungsformen Ebenengl.
Darstellungsformen Ebenengl. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsformen Ebenengl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Di 20.12.2005
Autor: Gwin

nabend...

ich bin gerade dabei mich mit vektoren auseinander zu setzten... speziell mit der ebenengleichung...

es gibt hier ja mehrere möglichkeiten der darstellung...

-Normalform
-Koordinatendarstellung
-Parameterform
-Achsenabschnittsform
-Hessesche Normalform

leider habe ich die übersicht verlohren wann man welche form benutzt bzw. welche vorteile die einzelnen formen haben...
kennt jemand von euch eine seite im i-net auf der dieses erläutert wird?
ich habe schon gesucht aber nichts gefunden auch aus meinem skript werde ich diesbezüglich nicht wirklich schlau...

vielen dank schon mal im vorraus...

mfg Gwin

        
Bezug
Darstellungsformen Ebenengl.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Di 20.12.2005
Autor: Leopold_Gast

Diese Vielfalt der Ebenendarstellungen ist verwirrend, weil sie die Tatsache verdunkelt, daß es in Wirklichkeit nur zwei Darstellungsformen gibt: die Normalform (auch Normalenform) und die Parameterdarstellung. Alle anderen sind Sonderfälle dieser beiden Darstellungsmöglichkeiten und bis auf die Hessesche Normalform schlichtweg überflüssig.


1. Normalform vektoriell

[mm]\vec{n} \left( \vec{x} - \vec{a} \right) = 0[/mm]

Hier ist [mm] \vec{n} [/mm] ein sogenannter Normalenvektor der Ebene, also ein vom Nullvektor verschiedener Vektor, der auf der Ebene senkrecht steht. [mm]\vec{a}[/mm] ist der Ortsvektor eines festen Ebenenpunktes (gelegentlich Stützvektor oder ähnlich genannt) und [mm]\vec{x}[/mm] der Ortsvektor eines variablen Ebenenpunktes.


2. Normalform skalar

Wenn du die Vektoren in Koordinaten bezüglich einer Standard-Orthonormalbasis darstellst:

[mm]\vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}[/mm]
(und entsprechend die andern)

und in 1. nach der Definition des Skalarproduktes ausmultiplizierst, bekommst du die skalare Variante der Normalenform:

[mm]n_1 x_1 + n_2 x_2 + n_3 x_3 + c = 0[/mm]

Hierbei ist [mm]c = - \vec{n} \, \vec{a}[/mm]. Und diese skalare Normalenform heißt auch Koordinatenform.


3. Hessesche Normalform

Hiervon spricht man, wenn in der Normalenform [mm]\vec{n}[/mm] die Länge 1 hat, wenn also [mm]\vec{n}^2 = 1[/mm] gilt. Skalar geschrieben heißt das: [mm]n_1^2 + n_2^2 + n_3^2 = 1[/mm].
Die Hessesche Normalenform wird angewandt, um den Abstand eines Punktes von einer Ebene zu berechnen.


4. Parameterdarstellung

[mm]\vec{x} = \vec{a} + \lambda \vec{u} + \mu \vec{v}[/mm]

Hierbei ist [mm]\vec{a}[/mm] der Ortsvektor eines festen Ebenenpunktes (Stützvektor), [mm]\vec{u}, \vec{v}[/mm] sind linear unabhängige Vektoren, sogenannte Richtungsvektoren der Ebene. Die Parameter [mm]\lambda, \mu[/mm] durchlaufen unabhängig voneinander die reellen Zahlen.
Kennt man drei nicht auf einer Geraden liegende Punkte [mm]A,B,C[/mm] der Ebene mit den Ortsvektoren [mm]\vec{a} , \vec{b} , \vec{c}[/mm], so kann man

[mm]\vec{u} = \vec{a} - \vec{b} \, , \ \ \vec{v} = \vec{a} - \vec{c}[/mm]

als Richtungsvektoren wählen. Einen Normalenvektor erhält man aus ihnen mit dem Kreuzprodukt:

[mm]\vec{n} = \vec{u} \times \vec{v}[/mm]


Und die Achsenabschnittsform ist gänzlich überflüssig. Daher gehe ich auf sie erst gar nicht ein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]