www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDarstellungsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Darstellungsmatrix
Darstellungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 10.01.2013
Autor: Unk

Aufgabe
Sei $V$ ein endlichdimensionaler Vektorraum. Seien $f,g [mm] \in [/mm] $End$(V)$ nilpotent, die zusätzlich $f [mm] \circ [/mm] g=g [mm] \circ [/mm] f$ erfüllen. Zeigen Sie, dass es eine Basis von V gibt, so dass die Darstellungsmatrizen von $f$ und $g$ beide obere Dreiecksgestalt haben.

Hallo,

irgendwie komme ich da nicht weiter und habe auch keine wirkliche Idee.
Da $f,g$ nilpotent gibt es Basen, so dass $f,g$ eine strikte obere Dreieksmatrix als Darstellungsmatrix haben. Allerdings sind diese Basen dann ja nicht notwendigerweise dieselben. Ich habe probiert aus AB=BA für quadratische Matrizen A,B ein Gleichungssystem zu machen, allerdings hat dies ja auch keinen Sinn.

Kann mir jemand einen Tipp geben?

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Fr 11.01.2013
Autor: hippias

Sieh Dir den Beweis fuer die Konstruktion der Basis fuer $f$ an; Du wirst vermutlich feststellen, dass ihr dazu die Raume $Kern [mm] f^{k}$ [/mm] fuer wachsendes $k$ benutzt habt. Mache Dir klar, dass diese Raeume $g$-invariant sind. Wende Induktion an und betrachte im Induktionsschritt die Abbildungen, die $f$ und $g$ in dem Raum $V/Kern f$ induzieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]