www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteDef.menge in Abh.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Def.menge in Abh.
Def.menge in Abh. < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Def.menge in Abh.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 19.11.2006
Autor: aleskos

Aufgabe
Geg: [mm] f_a(x)=\bruch{-x²+(1-a)x-2}{2x+a} [/mm]

Bestimmen Sie die Definitionsmenge der Funktion [mm] f_a. [/mm]
Untersuchen Sie, für welche Werte von a die Funktion [mm] f_a [/mm] eine stetig behebbare Definitionslücke besitzt. Geben Sie jeweils den vereinfachten Funktionsterm an.

Hallo erstmal, die Aufgabe ist soweit klar, bloß habe ich ein Problem bei der Zerlegung des Zählers in die einzelnen Linearfaktoren.

Hat mir jemand einen Tip, wie ich da am besten vorgehe?

Gruß
aleskos

        
Bezug
Def.menge in Abh.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 19.11.2006
Autor: Sigrid

Hallo aleskos,

> Geg: [mm]f_a(x)=\bruch{-x²+(1-a)x-2}{2x+a}[/mm]
>  
> Bestimmen Sie die Definitionsmenge der Funktion [mm]f_a.[/mm]
>  Untersuchen Sie, für welche Werte von a die Funktion [mm]f_a[/mm]
> eine stetig behebbare Definitionslücke besitzt. Geben Sie
> jeweils den vereinfachten Funktionsterm an.
>  Hallo erstmal, die Aufgabe ist soweit klar, bloß habe ich
> ein Problem bei der Zerlegung des Zählers in die einzelnen
> Linearfaktoren.

Das brauchst du auch gar nicht. Du weißt, das $ x = -\ [mm] \bruch{a}{2} [/mm] $ eine Nullstelle des Nenners ist. Jetzt suchst du diejenigen a, für die $ x = -\ [mm] \bruch{a}{2} [/mm] $ auch eine Nullstelle des Zählers ist. Für diese a bekommst du also eine stetig behebbare Definitionslücke.

Gruß
Sigrid

>  
> Hat mir jemand einen Tip, wie ich da am besten vorgehe?
>  
> Gruß
>  aleskos

Bezug
                
Bezug
Def.menge in Abh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 So 19.11.2006
Autor: aleskos

alledings...
habe für [mm] a_1=-2 [/mm] und [mm] a_2=4 [/mm] bekommen.
stimmt also!

vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]