www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisDefinition Operatornorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Definition Operatornorm
Definition Operatornorm < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Operatornorm: Operatornormdefinition mit min
Status: (Frage) beantwortet Status 
Datum: 18:01 So 11.01.2015
Autor: havoc1

Aufgabe
Frage:
Wieso wird die Operatornorm üblicherweise folgendermaßen definiert:
(f sind dabei Operatoren zwischen normieren Räumen, ||.|| sei dabei die zum entsprechenden Raum gehörende Norm)
inf [mm] \{c\ge0 |\forall x\in V : ||f(x)|| \le c*||x|| \} [/mm] = ||f||
wäre nicht auch
min [mm] \{c\ge0 |\forall x\in V : ||f(x)|| \le c*||x|| \} [/mm] = ||f||
genauso korrekt, vorrausgesetzt man vereinbart
min [mm] \{c\ge0 |\forall x\in V : ||f(x)|| \le c*||x|| \} [/mm] = [mm] \infty [/mm]
Falls die Ungleichung nur für [mm] c=\infty [/mm] erfüllt ist?

Hallo,

zur Frage siehe oben.
Begründung: Das Minimum sollte doch in jedem Fall angenommen werden.
Falls das Minimum zur Menge gehört, wird es angenommen und alles ist gut.
Wäre es nicht so, würde nur ein Infimum existieren. Da dieses dann aber nicht zur Menge gehört, gilt für dieses Infimum dann nicht mehr
||f||*||x|| [mm] \ge [/mm] ||f(x)||

        
Bezug
Definition Operatornorm: Antwort
Status: (Antwort) fertig Status 
Datum: 07:26 Mo 12.01.2015
Autor: fred97

Ich nehme an, es sind V und W normierte Räume und f:V [mm] \to [/mm] W linear


Sei

  $M:= [mm] \{c\ge0 |\forall x\in V : ||f(x)|| \le c\cdot{}||x|| \} [/mm] $

f heißt beschränkt [mm] \gdw [/mm] M ist nach unten beschränkt. In diesem Fall setzt man

   $||f||:= [mm] \inf [/mm] M$


Ist f beschränkt, so muss [mm] $\min [/mm] M$ i.a. nicht existieren.

Edit: das war Unsinn von mir. natürlich ex.  [mm] $\min [/mm] M$



Bastle Dir mal ein geeignetes Beispiel.

FRED

Bezug
                
Bezug
Definition Operatornorm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:45 Mo 12.01.2015
Autor: havoc1

Bist du dir ganz sicher, dass dies so ist? Denn die Menge aus der das Infimum gewählt wird ist abgeschlossen und nach unten beschränkt. Ich meinte, dass das Infimum dann immer zur Menge gehört.
Ich werd jetzt mal versuchen ein Gegenbeispiel zu finden.

Bezug
                        
Bezug
Definition Operatornorm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:01 Mo 12.01.2015
Autor: fred97


> Bist du dir ganz sicher, dass dies so ist? Denn die Menge
> aus der das Infimum gewählt wird ist abgeschlossen und
> nach unten beschränkt. Ich meinte, dass das Infimum dann
> immer zur Menge gehört.

Du hast recht. Oben habe ich mich vertan.


>  Ich werd jetzt mal versuchen ein Gegenbeispiel zu finden.  

Das wir Dir nicht gelingen !

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]