www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreDefinition geordnetes n-Tupel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Definition geordnetes n-Tupel
Definition geordnetes n-Tupel < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition geordnetes n-Tupel: Alternative Definition
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:28 Mo 01.05.2017
Autor: gfm

Hallo zusammen!

Ich arbeite gerade Ebbinghaus, "Einführung in die Mengenlehre" durch und bin an der Stelle, an der das geordnete Paar und seine Erweiterung auf n-Tupel behandelt wird.

Er schreibt, dass die Definition des geordneten Paar [mm] (a,b) :=F(a,b) [/mm] mit einer 2-stelligen Operation [mm] F [/mm] nur die Eigenschaft haben braucht, dass aus [mm] F(x,y)=F(a,b) [/mm] folgt, dass [mm] a=x [/mm] und [mm] b=y [/mm]. Und so folgt er Kuratowski und definiert [mm] (a,b):=\{\{a\},\{a,b\}\} [/mm]. Soweit so gut. Er bemerkt dass, wenn [mm] a\in A [/mm] und [mm] b\in B [/mm] gilt, [mm] (a,b)\in \mathcal{P}(\mathcal{P}(A\cup B)) [/mm] gilt.  

Als Erweiterung auf n-Tupel gibt er an ([mm] x_j\in X_j [/mm]):

[mm] (x_1):= x_1 [/mm]
[mm] (x_1,...x_n):=((x_1,...x_{n-1}), x_n) [/mm]

Außer dem Umstand, dass jetzt das Enthaltensein in [mm] \mathcal{P}(\mathcal{P}(X_1\cup X_2\cup ... \cup X_n)) [/mm] nicht mehr außer für $n=2$ gilt, werden die Mengenausdrücke für $n>2$ schnell sehr unübersichtlich.

Warum definiert man nicht [mm] $(x_1, x_2, [/mm] ..., [mm] x_n):=\{\{x_1\}, \{x_1, x_2\}, ..., \{x_1, ..., x_n\}\}$? [/mm] Diese Definition erfüllt die grundlegende Eigenschaft, dass die Gleichheit des n-Tupels äquivalent zur Gleichheit der einzelnen Komponenten ist. Jedes n-Tupel ist aus [mm] \mathcal{P}(\mathcal{P}(X_1\cup X_2\cup ... \cup X_n)) [/mm] eine Verallgemeinerung auf abzählbar undendliche Tupel liegt auf der Hand und wahrscheinlich auch auf beliebige Familien.

Was meint Ihr?

LG und vielen Dank im Voraus

gfm

        
Bezug
Definition geordnetes n-Tupel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Mo 01.05.2017
Autor: gfm

Ich habe meinen Fehler erkannt. Ihr braucht nicht antworten. LG gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]