www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDefinition von Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Definition von Konvergenz
Definition von Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition von Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Fr 08.12.2006
Autor: Lepkuchen

Hallo!

Die Definition von konvergenten Folgen lautet ja folgendermaßen:

Es gibt ein k > k0 und

|a(n) - a| < [mm] \varepsilon, [/mm] so ist a lim a(n).

Nur: Was hat es mit diesem k>k0 aufsich?

Wird auch oft bei etlichen Beweisen verwendet. Man sagt dann: Es gibt ein m>n>n0... Aber was heißt denn das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Definition von Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Fr 08.12.2006
Autor: angela.h.b.


> Hallo!
>  
> Die Definition von konvergenten Folgen lautet ja
> folgendermaßen:
>  
> Es gibt ein k > k0 und
>  
> |a(n) - a| < [mm]\varepsilon,[/mm] so ist a lim a(n).

Hallo,

es ist ganz wichtig, daß Du die Definitionen genau wiedergeben kannst, sonst geht leicht Wesentliches verloren!
Also: 1. korrekt nachplappern
        2. sich um die Inhalte bemühen und die Sache verstehen.
        3. Aus einem Verständnis der Angelegenheit heraus korrekt wiedergeben.


Die Folge a(n) konvergiert gegen a  (in Zeichen [mm] \limes_{n\rightarrow\infty}a(n)=a) [/mm] ) genau dann, wenn gilt:

Zu jedem [mm] \varepsilon>0 [/mm] findet man ein [mm] k_0 \in \IN, [/mm] so daß für jedes k, welches größer als [mm] k_0 [/mm] ist, gilt

|a(n) - a| [mm] <\varepsilon [/mm] .


>  
> Nur: Was hat es mit diesem k>k0 aufsich?

|a(n) - a|  ist der Abstand, den das Folgenglied a(n) von a hat.
Mit dem [mm] \varepsilon [/mm] gibst Du Dir einen (beliebig kleinen) Abstand vor.

Die Definition sagt: egal, wie winzig klein ich den Abstand [mm] \varepsilon [/mm] vorgebe, ab einem bestimmten Folgenglied rücken alle Folgenglieder mindestens so dicht an a heran, daß sie nicht weiter als [mm] \varepsilon [/mm] von a entfernt sind. Keines tanzt mehr aus der Reihe, Und dieses Folgenglied, ab welchem alle Folgenglieder genügend dicht an a liegen, ist das [mm] k_0. [/mm]

Nun, da das [mm] \varepsilon [/mm] beliebig klein sein darf, nähert sich die Folge beliebig dicht dem a.


>
> Wird auch oft bei etlichen Beweisen verwendet.

Wenn du mit dem [mm] \varepsilon-Kriterium [/mm] Konvergenz zeigen willst - bzw. mußt - brauchst Du zu vorgegebenem [mm] \varepsilon [/mm] ein passendes [mm] k_0, [/mm] ab welchem die Folgenglieder dann genügend dicht an den zu beweisenden Grenzwert heranrücken. Dieses [mm] k_0 [/mm] hängt in der Regel vom [mm] \varepsilon [/mm] ab.
Das kann man sich ja auch vorstellen: wenn ich den erlaubten Abstand verkleinere, wird es etwas länger dauern, bis ich zu den Folgegliedern komme, die in der entsprechenden Umgebung liegen.

Man sagt

> dann: Es gibt ein m>n>n0... Aber was heißt denn das?

Daß es ein m mit eben der Eigenschaft gibt.
Ohne Zusammenhang kann ich da jetzt nicht mehr sagen.

Falls du einen bestimmten Beweis aus der Vorlesung oder so nicht verstehst, kannst du ihn ja mal aufschreiben und an den entsprechenden Stellen deine Fragen und Bedenken.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]