www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDefinitionsbereich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Definitionsbereich
Definitionsbereich < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 30.01.2009
Autor: Englein89

Hallo!

Ich habe die Funktion

[mm] f(x,y)=x^2+4y^3 [/mm]

Nebenbedingung [mm] x^2+2y^2=1 [/mm]

Ich versuche das mit Variablensubstitution zu lösen:

[mm] x^2=1-2y^2 [/mm]

also ist [mm] f(y)=4y^3-2y^2+1 [/mm]

Aber wieso wird in meiner Lösung nun ein Intervall für y berechnet, nämlich y [mm] \in [-\bruch{1}{\wurzel{2}}, \bruch{1}{\wurzel{2}}] [/mm]

Wieso schränke ich die Funktion überhaupt ein? Setze ich die Punkte ein, dann fällt ja lediglich [mm] -2y^2+1 [/mm]
weg.

        
Bezug
Definitionsbereich: Nebenbedingung
Status: (Antwort) fertig Status 
Datum: 17:48 Fr 30.01.2009
Autor: Loddar

Hallo Englein!


Das genannte Intervall ergibt sich aus der Nebenbedingung. Für alle anderen y-Werte wird die Summe [mm] $x^2+2y^2$ [/mm] nämlich größer als 1 und "sprengt" damit die Nebenbedingung.


Gruß
Loddar


Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Sa 31.01.2009
Autor: Englein89

Aber wenn ich die Werte für y einsetze, dann habe ich doch

[mm] x^2+1=1 [/mm] und damit [mm] x^2=0? [/mm]

Bezug
                        
Bezug
Definitionsbereich: stimmt so
Status: (Antwort) fertig Status 
Datum: 12:56 Sa 31.01.2009
Autor: Loddar

Hallo Englein!


[ok] Für maximale y-Werte kannst Du nur minimale x-Werte einsetzen. Und kleiner als 0 kann [mm] $x^2$ [/mm] nicht werden.


Gruß
Loddar


Bezug
                                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Sa 31.01.2009
Autor: Englein89

Also gucke ich bei solchen quadratischen Nebenbedingungen, wann x größer oder gleich 0 wird für die y-Variable?

Was wäre bei x+y=1?

Bezug
                                        
Bezug
Definitionsbereich: nicht pauschal
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 31.01.2009
Autor: Loddar

Hallo Englein!


> Also gucke ich bei solchen quadratischen Nebenbedingungen,
> wann x größer oder gleich 0 wird für die y-Variable?

[ok]

  

> Was wäre bei x+y=1?

Hier gibt es an sich keinerlei Einschränkung. Es sei denn, in der Aufgabenstellung wird vorgegeben z.B. $x,y \ [mm] \ge [/mm] \ 0$ .


Gruß
Loddar



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]