www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Definitionsmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Definitionsmenge
Definitionsmenge < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Di 11.12.2007
Autor: JulGe

Hallo,

ich habe zwei Fragen zur Definitionsmenge von Funktionen:

1. Wenn ich eine Funktion wie [mm] f(x)=x^{2}-x+6 [/mm] hab. Ist D dann immer [mm] D=\IR [/mm]
2. Wenn ich eine andere Funktion hab wie [mm] f(x)=\bruch{4}{2x^{2}-8} [/mm]

Woher weis ich dann was ich schreiben muss:

[mm] 2x^{2}-8\ge0 [/mm]

[mm] 2x^{2}-8\le0 [/mm]

[mm] 2x^{2}-8=0 [/mm]

[mm] 2x^{2}-8<0 [/mm]

[mm] 2x^{2}-8>0 [/mm]

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Definitionsmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Di 11.12.2007
Autor: XPatrickX

Hallo, es gibt nur eine Regel, die den Definitionsbereich einschränken kann: Division durch Null ist verboten. D.h. also der Nenner darf nich null werden.
Also musst du in deinem Bsp. die Gleichung [mm]2x^2 - 8 = 0[/mm] lösen und die (beiden) Lösungen aus dem Definitionsbereich ausschließen.
Gruß Patrick

Bezug
                
Bezug
Definitionsmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 11.12.2007
Autor: JulGe

Vielen Dank erstmal. Kannst du mir das noch einmal nur etwas allgemeiner sagen, damit ich weis, woran ich erkenne, ob ich etwas kleiner oder gleich usw. setzen muss.

Bezug
                        
Bezug
Definitionsmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 11.12.2007
Autor: Tyskie84

Hallo!

Worauf willst du denn hinaus mit denen "größer" "kleiner" oder "gleich"??
Wenn du den Definitionsbereich einer gebrochrationalen Funktion berechnen willst dann musst du die Nullstellen im Nenner berechnen. Wenn du das getan hast sind die Nullstellen deine Einschränkungen. Sagen wir mal du bekommst 2 und 3 also Nullstelle heraus dann ist der Definitionsbereich [mm] DB_{f}= \IR [/mm] \ {2,3}. Bei einer Wurzelfunktion zum beispiel f(x)= [mm] \wurzel{x³} [/mm] musst du nicht die nullstellen ausrechnen sondern du musst schauen wann die wurzel negativ wird denn das ist im reellen nicht definiert und in der schule behandelt ihr nur reelle zahlen. also prüfst du so:
[mm] x³\ge0 [/mm] Nun weisst du dass du nur positive zahlen einsetzten darfst. Also lautet der Definitionsbereich: [mm] DB_{f}= \IR_{+} \cup [/mm] {0}

Gruß



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]