Delta-Distribution < Physik < Naturwiss. < Vorhilfe
|
Hallo,
ich habe eine Frage zur Delta-Distribution.
Es gilt ja [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-\vec{r}_{0})
[/mm]
Hier fängt es schon an. Die Delta-Distribution ist mir bekannt, wenn ich sie integriere. Aber ohne Integral weiß ich nicht so recht, wie ich sie zu deuten habe.
Es gilt ja [mm] \delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \mbox{ gerade} \\ 1, & \mbox{für } \vec{r}=\vec{r}_{0} \mbox{ ungerade} \end{cases}
[/mm]
Die Frage bezieht sich im Speziellen auf Spiegelladungen.
Ich habe bei x=a eine Ladung q und bei x=-a eine Spiegelladung -q. Ich erhalte ja dann: [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})+4{\pi}q\delta(\vec{r}+a\vec{e}_{x}) [/mm] (bis jetzt nur eingesetzt)
Jetzt muss im rechten Abschnitt ja [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x}) [/mm] gelten. Folglich muss [mm] 4{\pi}q\delta(\vec{r}+a\vec{e}_{x})=0 [/mm] sein, also [mm] \delta(\vec{r}+a\vec{e}_{x})=0. [/mm] Wird die Delta-Distribution jetzt Null, da es im rechten (positiven) Raum keinen [mm] \vec{r} [/mm] mit [mm] \vec{r}+a\vec{e}_{x}=0 [/mm] gibt? Also, da [mm] \vec{r}+a\vec{e}_{x}{\not=}0 [/mm] , [mm] \forall \vec{r}= \vektor{x \\ y \\z}, [/mm] mit [mm] x\ge [/mm] 0.
Ich hoffe, es ist einigermaßen verständlich
Gruß
LordPippin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:27 Di 20.09.2011 | Autor: | rainerS |
Hallo!
> ich habe eine Frage zur Delta-Distribution.
> Es gilt ja [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-\vec{r}_{0})[/mm]
> Hier fängt es schon an. Die Delta-Distribution ist mir
> bekannt, wenn ich sie integriere. Aber ohne Integral weiß
> ich nicht so recht, wie ich sie zu deuten habe.
Eigentlich gar nicht. Das Integral ist die Definition.
> Es gilt ja [mm]\delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \mbox{ gerade} \\ 1, & \mbox{für } \vec{r}=\vec{r}_{0} \mbox{ ungerade} \end{cases}[/mm]
Nein, das schon gar nicht. Das wäre eine normale Funktion, und das Integral wäre immer 0, da diese Funktion nur in einem Punkt von 0 verschieden ist (und gerade/ungerade ist hier Unsinn)
Was du oft siehst, ist
[mm]\delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \\ \infty, & \mbox{für } \vec{r}=\vec{r}_{0}\end{cases}[/mm]
Aber auch mit dieser Definition ist das Integral (bei jeder sinnvollen Definition des Integralbegriffs) immer 0.
Das geht auf Paul Dirac zurück, aber ich bin mir sicher, dass er genau wusste, dass diese Form mathematisch keinen Sinn ergibt.
> Die Frage bezieht sich im Speziellen auf Spiegelladungen.
> Ich habe bei x=a eine Ladung q und bei x=-a eine
> Spiegelladung -q. Ich erhalte ja dann:
> [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})+4{\pi}q\delta(\vec{r}+a\vec{e}_{x})[/mm]
> (bis jetzt nur eingesetzt)
> Jetzt muss im rechten Abschnitt ja
> [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})[/mm] gelten.
> Folglich muss [mm]4{\pi}q\delta(\vec{r}+a\vec{e}_{x})=0[/mm] sein,
> also [mm]\delta(\vec{r}+a\vec{e}_{x})=0.[/mm] Wird die
> Delta-Distribution jetzt Null, da es im rechten (positiven)
> Raum keinen [mm]\vec{r}[/mm] mit [mm]\vec{r}+a\vec{e}_{x}=0[/mm] gibt?
Genau genommen nicht, da [mm] $\delta$ [/mm] ohne das Integral keinen rechten Sinn ergibt. Aber es gilt natürlich, dass ein Integral über ein Volumen 0 ist, wenn das Volumen den Punkt [mm] $\vec{r}$ [/mm] mit [mm]\vec{r}+a\vec{e}_{x}=0[/mm] nicht enthält.
Sieh es so: das ist die Idealisierung einer sehr kleinen, homogenen kugelförmigen Ladungsverteilung mit Gesamtladung q am Punkt [mm] $a\vec{e}_x$. [/mm] Das ist viel anschaulicher als "eine endliche Ladung mit Radius 0 und unendliche hoer Ladungsdichte".
Die Spiegelladung einer solchen Ladungsverteilung ist dann ebenso sehr klein, homogen und kugelförmig.
Viele Grüße
Rainer
|
|
|
|