www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDet von ähnlichen Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Det von ähnlichen Matrizen
Det von ähnlichen Matrizen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Det von ähnlichen Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Di 28.09.2010
Autor: folken

Aufgabe
Sei
S = [mm] \pmat{ 1 & 4 & 2i & 0 \\ 0 & 2 & i & 6 \\ 0 & 0 & 7i & 1 \\ 0 & 0 & 0 & 3 } [/mm]

Berechnen sie [mm] det(SAS^{-1}) [/mm]

Hallo,

die Lösung dieser Aufgabe ist mir bekannt:

[mm] det(SAS^{-1}) [/mm] = [mm] det(S)*det(A)*det(S^{-1}) [/mm] = det(A) = 1

Was ich nicht verstehe ist, wie man darauf kommt ,dass die det(A)= 1 ist, ohne die Matrix A zu kennen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Di 28.09.2010
Autor: wieschoo

Verheimlichst du uns noch etwas, wie [mm]SAS^{-1}=\pmat{ ? & \cdots & ?\\ \vdots & \ddots & \vdots\\ ? & \cdots & ?}[/mm]

Denn A kann alles möglich sein (Einheitsmatix,...). Welche Form hat [mm]SAS^{-1}[/mm]?


Bezug
                
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Di 28.09.2010
Autor: folken

Nein die Aufgabe ist genauso wie ich sie aufgeschrieben habe.
Aber ich hätte meine Frage etwas anders formulieren sollen:
Ist es überhaupt möglich auf diese Lösung zu kommen, ohne die Matrix A zu kennen.
Das ist der Aufgabenteil b, es gibt noch einen Aufgabenteil a, wobei mir dieser nicht
vorliegt.

Bezug
        
Bezug
Det von ähnlichen Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Di 28.09.2010
Autor: angela.h.b.


> Sei
>  S = [mm]\pmat{ 1 & 4 & 2i & 0 \\ 0 & 2 & i & 6 \\ 0 & 0 & 7i & 1 \\ 0 & 0 & 0 & 3 }[/mm]
>  
> Berechnen sie [mm]det(SAS^{-1})[/mm]

Hallo,

wenn Du einzig und allein die Matrix S gegeben hast, kann das nicht gelingen.

Sofern Dir allerdings die Matrix [mm] SAS^{-1} [/mm] oder [mm] det(SAS^{-1}) [/mm] zur Verfügung steht,kennst  Du auch det A.

Gruß v. Angela


Bezug
                
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Di 28.09.2010
Autor: folken

Danke für die Antwort. Das wollte ich wissen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]