Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:40 Mi 18.11.2009 | Autor: | ms2008de |
Aufgabe | Seien [mm] A_{1} \in \IR^{k x k} ,A_{2} \in \IR^{l x l}, [/mm] B [mm] \in \IR^{k x l} [/mm] und 0(Nullmatrix) [mm] \in \IR^{l x k}. [/mm] Beweisen Sie, dass für eine Matrix C mit C:= [mm] \pmat{ A_{1} & B \\ 0 & A_{2} } [/mm] gilt: det(C)= [mm] det(A_{1})*det(A_{2}) [/mm] |
Hallo,
Hab leider große Schwierigkeiten hier mal auf einen Ansatz zu kommen.
Wenn [mm] A_{1},A_{2} [/mm] beides obere Dreiecksmatrizen wären, wäre das ganze klar, denn dann wäre ja das Produkt der Einträge auf der Hauptdiagonalen die Determinante und somit det(C)= [mm] det(A_{1})*det(A_{2}).
[/mm]
Aber wie kann ich das für den allgemeinen Fall lösen in dem [mm] A_{1},A_{2} [/mm] nicht zwangsweise Dreiecksmatrizen sind?
Wäre euch um jede Hilfe dankbar.
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:06 Mi 18.11.2009 | Autor: | felixf |
Hallo!
> Seien [mm]A_{1} \in \IR^{k x k} ,A_{2} \in \IR^{l x l},[/mm] B [mm]\in \IR^{k x l}[/mm]
> und 0(Nullmatrix) [mm]\in \IR^{l x k}.[/mm] Beweisen Sie, dass für
> eine Matrix C mit C:= [mm]\pmat{ A_{1} & B \\ 0 & A_{2} }[/mm] gilt:
> det(C)= [mm]det(A_{1})*det(A_{2})[/mm]
>
> Hab leider große Schwierigkeiten hier mal auf einen Ansatz
> zu kommen.
Mit der Leibniz-Formel? Mit der geht das recht schoen.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:13 Mi 18.11.2009 | Autor: | ms2008de |
Hallo> Hallo!
>
> > Seien [mm]A_{1} \in \IR^{k x k} ,A_{2} \in \IR^{l x l},[/mm] B [mm]\in \IR^{k x l}[/mm]
> > und 0(Nullmatrix) [mm]\in \IR^{l x k}.[/mm] Beweisen Sie, dass für
> > eine Matrix C mit C:= [mm]\pmat{ A_{1} & B \\ 0 & A_{2} }[/mm] gilt:
> > det(C)= [mm]det(A_{1})*det(A_{2})[/mm]
> >
> > Hab leider große Schwierigkeiten hier mal auf einen Ansatz
> > zu kommen.
>
> Mit der
> Leibniz-Formel?
Die haben wir leider kaum behandelt, weiß nich wirklich wie ich diese anwende... Könnt man das nicht irgendwie vielleicht mit der Produktregel hintricksen?
Vielen Dank schon mal so weit.
Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:37 Mi 18.11.2009 | Autor: | felixf |
Hallo!
> > > Seien [mm]A_{1} \in \IR^{k x k} ,A_{2} \in \IR^{l x l},[/mm] B [mm]\in \IR^{k x l}[/mm]
> > > und 0(Nullmatrix) [mm]\in \IR^{l x k}.[/mm] Beweisen Sie, dass für
> > > eine Matrix C mit C:= [mm]\pmat{ A_{1} & B \\ 0 & A_{2} }[/mm] gilt:
> > > det(C)= [mm]det(A_{1})*det(A_{2})[/mm]
> > >
> > > Hab leider große Schwierigkeiten hier mal auf einen Ansatz
> > > zu kommen.
> >
> > Mit der
> > Leibniz-Formel?
>
> Die haben wir leider kaum behandelt, weiß nich wirklich
> wie ich diese anwende... Könnt man das nicht irgendwie
> vielleicht mit der Produktregel hintricksen?
Was ist die Produktregel?
Alternativ kannst du auch Zeilen- und Spaltenumformungen durchfuehren, um $C$ in eine Diagonalmatrix umzuwandeln, die sich aus Diagonalmatrix von [mm] $A_1$ [/mm] und Diagonalmatrix von [mm] $A_2$ [/mm] zusammensetzt.
LG Felix
|
|
|
|