www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Determinante, Regel Sarrus
Status: (Frage) beantwortet Status 
Datum: 12:12 Sa 14.01.2012
Autor: fe11x

Aufgabe
Zeige das eine 3x3 Matrix mit Einträgen 1 oder -1, niemals eine Determinante von 3! haben kann.
Verwende dazu z. B. die Regel von Sarrus, und zeige, das alle 6 Permuationen gemeinsam nicht 6 ergeben können.

guten morgen.
wie kann man obige fragestellung am besten beweisen.
es ist irgendwie logisch das nicht alle 3 positiven permuatationen 3., und alle 3 negativen permuatationen -3 ergeben können.
aber wie zeigt man das am besten.

grüße
felix

        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Sa 14.01.2012
Autor: Al-Chwarizmi


> Zeige das eine 3x3 Matrix mit Einträgen 1 oder -1, niemals
> eine Determinante von 3! haben kann.
>  Verwende dazu z. B. die Regel von Sarrus, und zeige, das
> alle 6 Permuationen gemeinsam nicht 6 ergeben können.
>  guten morgen.
>  wie kann man obige fragestellung am besten beweisen.
>  es ist irgendwie logisch das nicht alle 3 positiven
> permuatationen 3., und alle 3 negativen permuatationen -3
> ergeben können.
>  aber wie zeigt man das am besten.
>
> grüße
>  felix


Hallo Felix,

eine unübliche, aber interessante Aufgabe.

Die betrachtete Determinante sei

     $\ D\ =\ [mm] \vmat{a&b&c\\d&e&f\\g&h&i}\ [/mm] =\ aei+bfg+cdh-(afh+bdi+ceg)$

Um auf $\ D=6$  zu kommen, müsste

  $\ [mm] a\,e\,i=b\,f\,g=c\,d\,h=1$ [/mm] und $\ [mm] a\,f\,h=b\,d\,i=c\,e\,g=-1$ [/mm] sein.

Betrachtung des Produktes

     $\ [mm] a\,b\,c\,d\,e\,f\,g\,h\,i=a\,e\,i*b\,f\,g*c\,d\,h=a\,f\,h*b\,d\,i*c\,e\,g$ [/mm]

führt auf einen Widerspruch.

LG   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]