www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Determinante berechnen
Determinante berechnen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante berechnen: Tipp & Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:38 Do 28.01.2010
Autor: Krischy

Aufgabe
Berechnen sie die Determinante det (A) [mm] \pmat{ 4 & 3 & 1 & 2 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 } [/mm]

So wie ich das verstanden habe, muss ich jetzt aus dieser (4x4) Matrix, 16 unterdeterminanten bilden. das habe ich gemacht :

(a11) = [mm] \pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 } [/mm] = 1
( Natürlich habe ich die ersten beiden Spalten noch daneben geschrieben und dass dann mit hilfe der Regel von Sarrus berechnet, weiß nur nicht wie ich das hier anschaulich darstellen soll)

(a12) = [mm] \pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 } [/mm] = 1

(a13) = [mm] \pmat{ 1 & 1 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 } [/mm] = 0

(a14) = [mm] \pmat{ 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 } [/mm] = 0

(a21) = [mm] \pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 } [/mm] = 1

(a22) = [mm] \pmat{ 4 & 1 & 2 \\ 1 & 2 & 2 \\ 0 & 0 & 1 } [/mm] = 7

(a23) = [mm] \pmat{ 4 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 } [/mm] = 1

(a24) = [mm] \pmat{ 4 & 3 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 } [/mm] = 0

(a31) = [mm] \pmat{ 3 & 1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1 } [/mm] = 2

(a32) = [mm] \pmat{ 4 & 1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1 } [/mm] = 3

(a33) = [mm] \pmat{ 4 & 3 & 2 \\ 1 & 1& -1 \\ 0 & 0 & 1 } [/mm] = 1

(a34) = [mm] \pmat{ 4 & 3 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 } [/mm] = 0

(a41) = [mm] \pmat{ 3 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & 2 & 2 } [/mm] = 11

(a42) = [mm] \pmat{ 4 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & 2 & 2 } [/mm] = 15

(a43) = [mm] \pmat{ 4 & 3 & 2 \\ 1 & 1 & -1 \\ 1 & 1 & 2 } [/mm] = 3

(a44) = [mm] \pmat{ 4 & 3 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 } [/mm] = 1

so jetzt habe ich ja die Determinanten für die 16 Unterdeterminanten, weiß aber nicht wie ich jetzt auf die Determinante der (4x4) Matrix kommen soll. ich weiß dass die determinante 1 ist, ich hoffe mir kann hier jemand helfen. Danke schon mal. Vielleicht gibt es ja auch eine Kürzere Methode, diese hier dauert ziemlich lange...

        
Bezug
Determinante berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Do 28.01.2010
Autor: angela.h.b.


> Berechnen sie die Determinante det (A) [mm]\pmat{ 4 & 3 & 1 & 2 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 }[/mm]
>  
> So wie ich das verstanden habe, muss ich jetzt aus dieser
> (4x4) Matrix, 16 unterdeterminanten bilden. das habe ich
> gemacht :
>  
> (a11) = [mm]\pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 }[/mm] = 1
>  ( Natürlich habe ich die ersten beiden Spalten noch
> daneben geschrieben und dass dann mit hilfe der Regel von
> Sarrus berechnet, weiß nur nicht wie ich das hier
> anschaulich darstellen soll)
>
> (a12) = [mm]\pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 }[/mm] = 1
>  
> (a13) = [mm]\pmat{ 1 & 1 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 }[/mm] = 0
>  
> (a14) = [mm]\pmat{ 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 }[/mm] = 0
>  
> (a21) = [mm]\pmat{ 1 & 1 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 }[/mm] = 1
>  
> (a22) = [mm]\pmat{ 4 & 1 & 2 \\ 1 & 2 & 2 \\ 0 & 0 & 1 }[/mm] = 7
>  
> (a23) = [mm]\pmat{ 4 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 }[/mm] = 1
>  
> (a24) = [mm]\pmat{ 4 & 3 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 }[/mm] = 0
>  
> (a31) = [mm]\pmat{ 3 & 1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1 }[/mm] = 2
>  
> (a32) = [mm]\pmat{ 4 & 1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1 }[/mm] = 3
>  
> (a33) = [mm]\pmat{ 4 & 3 & 2 \\ 1 & 1& -1 \\ 0 & 0 & 1 }[/mm] = 1
>  
> (a34) = [mm]\pmat{ 4 & 3 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 }[/mm] = 0
>  
> (a41) = [mm]\pmat{ 3 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & 2 & 2 }[/mm] = 11
>  
> (a42) = [mm]\pmat{ 4 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & 2 & 2 }[/mm] = 15
>  
> (a43) = [mm]\pmat{ 4 & 3 & 2 \\ 1 & 1 & -1 \\ 1 & 1 & 2 }[/mm] = 3
>  
> (a44) = [mm]\pmat{ 4 & 3 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 }[/mm] = 1
>  
> so jetzt habe ich ja die Determinanten für die 16
> Unterdeterminanten, weiß aber nicht wie ich jetzt auf die
> Determinante der (4x4) Matrix kommen soll. ich weiß dass
> die determinante 1 ist, ich hoffe mir kann hier jemand
> helfen. Danke schon mal. Vielleicht gibt es ja auch eine
> Kürzere Methode, diese hier dauert ziemlich lange...

Hallo,

Du warst sehr fleißig und hast es schön aufgeschreiben, Deine Determinanten habe ich nicht einzeln geprüft.

Du hättest nur (max.) 4 Unterdeterminanten benötigt.

Wenn Du nach der 1. Zeile entwickelst  (siehe: Laplace-Entwicklung), bekommst Du

det [mm] A=(-1)^{1+1}*4det(A_1_1) +(-1)^{1+2}*3det(A_1_2) [/mm] + [mm] (-1)^{1+3}* 1det(A_1_3) +(-1)^{1+4}* 2det(A_1_4)= [/mm] kannst Du selbst ausrechnen.

Egal, nach welcher Zeile oder Spalte Du entickelst, es sollte immer dasselbe rauskommen, kannst ja probieren.

Wenn man schlau ist, sucht man sich Zeilen oder Spalten aus mit vielen Nullen, hier die letzte Zeile.

Man bekommt:

det(A)= 0 +0 +0 [mm] +(-1)^{4+4}*1*det(A_4_4)=1. [/mm]

Gruß v. Angela






Bezug
                
Bezug
Determinante berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Do 28.01.2010
Autor: Krischy

okay danke dir, wenn ich eine (5x5) matrix habe, reichen dann auch 4 unterdeterminanten?

Bezug
                        
Bezug
Determinante berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Do 28.01.2010
Autor: angela.h.b.


> okay danke dir, wenn ich eine (5x5) matrix habe, reichen
> dann auch 4 unterdeterminanten?

Hallo,

nein, natürlich nicht! Deine Zeile bzw. Spalten haben dann doch 5 Einträge, also brauchst Du 5 Unterdeterminanten.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]