www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Determinante bestimmen
Determinante bestimmen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante bestimmen: Tipps
Status: (Frage) beantwortet Status 
Datum: 09:37 Do 02.02.2012
Autor: heinze

Aufgabe
Bestimmen sie begründet für [mm] A\in M(3x3,\IR) [/mm] mit det(A)=-3, die folgenden Determinantenausdrücke.

[mm] det(\bruch{1}{2}A), [/mm] det(-A), [mm] det(A^2) [/mm] und [mm] det(A^1) [/mm]


Hier dasselbe, also auch ein Beispiel finden und davon die Determinantenausdrücke bestimmen?

Aber was soll ich hier begründen?


LG heinze

        
Bezug
Determinante bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Do 02.02.2012
Autor: Schadowmaster

moin heinze,

Weißt du, wie man die Determinante mit dem Gaußalgorithmus bestimmen kann?
Das könnte hier ganz hilfreich sein.
Davon abgesehen ist die Determinante, wie du sicher weißt, multiplikativ, also $det(AB) = det(A)*det(B)$
Stelle dir nun etwa [mm] $\frac{1}{2}A$ [/mm] als Produkt geeigneter Matrizen da, deren Determinanten du alle einzeln berechnen kannst.

Und natürlich ist es nie verkehrt, sich das ganze erstmal an einem Beispiel klar zu machen, auch wenn ein Beispiel im Allgemeinen kein Beweis ist.

lg

Schadow

Bezug
                
Bezug
Determinante bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Do 02.02.2012
Autor: heinze

Das hab ich nicht verstanden. An einem Beispiel habe ich mir das bereits klar gemacht. Aber ich verstehe nicht warum ich 2 Matrizen multiplizieren soll, wenn es doch nur um eine Matrix A geht.


LG heinze

Bezug
                        
Bezug
Determinante bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Do 02.02.2012
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo heize,


> Das hab ich nicht verstanden. An einem Beispiel habe ich
> mir das bereits klar gemacht. Aber ich verstehe nicht warum
> ich 2 Matrizen multiplizieren soll, wenn es doch nur um
> eine Matrix A geht.

Das ist die Multiplikativität:

Es gilt $\operatorname{det}(A\cdot{}B)=\operatorname{det}(A)\cdot{}\operatorname{det}(B)$

Du sollst u.a $\operatorname{det}\left(A^2\right)$ ausrechnen:

Mit $B=A$ gilt mit der Multiplikativität also $\operatorname{det}\left(A^2\right)=\operatorname{det(A\cdot{}A)=\ldots$

>  
>
> LG heinze

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]