www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDeutung einer Abbildungsvorsch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Deutung einer Abbildungsvorsch
Deutung einer Abbildungsvorsch < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Deutung einer Abbildungsvorsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Sa 29.11.2008
Autor: roedigenkanter

Gegeben ist eine Abbildung f aus R2 in R3.

Die Abbildungsvorschrift lediglich durch:

f(x,y) = (y,x-3y,2x+y)

Die Abbildungsvorschrift ist für mich völlig unverständlich. Ist hier ein Gleichungssystem gemeint und handelt es sich (einfach?) um die Abbildung eines Zahlendupels x,y - aber wohin?.
Ich will nur wissen wer hier auf wen abgebildet werden soll.

        
Bezug
Deutung einer Abbildungsvorsch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 29.11.2008
Autor: angela.h.b.


> Gegeben ist eine Abbildung f aus R2 in R3.
>  
> Die Abbildungsvorschrift lediglich durch:
>  
> f(x,y) = (y,x-3y,2x+y)
>  
> Die Abbildungsvorschrift ist für mich völlig
> unverständlich. Ist hier ein Gleichungssystem gemeint und
> handelt es sich (einfach?) um die Abbildung eines
> Zahlendupels x,y - aber wohin?.
>  Ich will nur wissen wer hier auf wen abgebildet werden
> soll.  

Hallo,

die Abbildung [mm] f:\IR^2\to \IR^3 [/mm]  bildet Zweitupel in einer bestimmten Art und Weise auf Dreitupel ab.

Ich mache einfach mal ein Beispiel vor:  f(1,2) = (2,1-3*2,2*1+2)=(2, -5, 4).

Gruß v. Angela


Bezug
        
Bezug
Deutung einer Abbildungsvorsch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Sa 29.11.2008
Autor: leduart

Hallo
es wird der Raum [mm] R^2- [/mm] stell ihn dir als Ebene vor- in den Raum [mm] R^3 [/mm] abgebildet. d.h. jedem Punkt der Ebene wird ein Punkt des Raumes zugeordnet!

oder [mm] \vektor{x \\ y}==>\vektor{y \\ x-3y\\ 2x+y} [/mm]

Gruss leduart

Bezug
                
Bezug
Deutung einer Abbildungsvorsch: Vielen Dank
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 29.11.2008
Autor: roedigenkanter

genau so eine Erklärung hat mir gefehlt.
Beide Antworten sind gleich hilfreich.
Danke

PS: Die geometrische Interpretation kann sicher auch durch eine algebraische ersetzt werden. Aber x und y als Lösungen des Gleichungssystems zu sehen,dessen Matrix durch die Vorschrift geliefert wird, ist wohl etwas zu exotisch?

Bezug
                        
Bezug
Deutung einer Abbildungsvorsch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 29.11.2008
Autor: angela.h.b.


> PS: Die geometrische Interpretation kann sicher auch durch
> eine algebraische ersetzt werden. Aber x und y als Lösungen
> des Gleichungssystems zu sehen,dessen Matrix durch die
> Vorschrift geliefert wird, ist wohl etwas zu exotisch?

Hallo,

ich schau jetzt mal in meine Kristallkugel...

Sollst Du vielleicht die darstellende Matrix der Abbildung angeben oder sowas in der Richtung?

Du kannst

[mm] f(\vektor{x\\y}) [/mm] = [mm] (\vektor{y\\x-3y\\2x+y}) [/mm] auch schreiben als

[mm] f(\vektor{x\\y})=\pmat{0&1\\1&-3\\2&1}\vektor{x\\y}. [/mm]

Gruß v. Angela

Bezug
                                
Bezug
Deutung einer Abbildungsvorsch: Kristallkugel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Sa 29.11.2008
Autor: roedigenkanter

Ich wollte wirklich nur verstehen, was hier wohin abgebildet wird. Die mir selbst gestellte Aufgabe war lediglich,einige Beispiele daraufhin zu untersuchen, ob es sich um lineare Abb. handelt. Ich war über das in einem Vorlesungsskript (FSU Jena) gefundene "Einführungsbeispiel zum Nachrechnen" derart überrascht, dass ich das erstmal klären wollte.
Ich hoffe jetzt, dass es mir gelingt, die Summe eines solchen Zahlendupels und dann eines Zahlentripels zu bilden.
Ich hatte da von jeder Aufgabe unbhängig einenZusammenhang zu anderen Teilgebieten vermutet, was jawohl auch nicht ganz so weit hergeholt ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]