www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDgl lösen mit Laplace
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Dgl lösen mit Laplace
Dgl lösen mit Laplace < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dgl lösen mit Laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:55 So 26.09.2010
Autor: Boki87

Aufgabe
Lösen sie folgende Differentialgleichung mit Hilfe von Laplace:

y''+2y'+2y=0

Hallo

ich habe die Aufgabe bereits gelöst in dem ich [mm] \bruch{s+2}{s^{2}+2s+2} [/mm] zu [mm] \bruch{s+2}{(s+1)^{2}+1} [/mm] ergänzt habe.

Allerdings hab ich dafür ewig überlegen müssen bis ich darauf gekommen bin, dass ich so umformen kann [mm] \bruch{s+1}{(s+1)^{2}+1}+\bruch{1}{(s+1)^{2}+1} [/mm] und dann in der Korrspondanztabelle nachschauen kann.

Daher meine Frage, ich habe ähnliche Aufgaben bisher immer mit Partialbruchzerlegung gelöst.

Kann ich das hier auch machen? Meine Nullstellen sind ja [mm] s_{1}=-1+i [/mm] und [mm] s_{2}=-1-i. [/mm] Wie würde denn der Ansatz da aussehen, ich finde im Internet immer nur Ansätze bei der auch eine nichtkomplexe Nullstelle dabei ist.

Vielen Dank

        
Bezug
Dgl lösen mit Laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 So 26.09.2010
Autor: fencheltee


> Lösen sie folgende Differentialgleichung mit Hilfe von
> Laplace:
>  
> y''+2y'+2y=0
>  Hallo

und das awp dazu?

>  
> ich habe die Aufgabe bereits gelöst in dem ich
> [mm]\bruch{s+2}{s^{2}+2s+2}[/mm] zu [mm]\bruch{s+2}{(s+1)^{2}+1}[/mm]
> ergänzt habe.
>  
> Allerdings hab ich dafür ewig überlegen müssen bis ich
> darauf gekommen bin, dass ich so umformen kann
> [mm]\bruch{s+1}{(s+1)^{2}+1}+\bruch{1}{(s+1)^{2}+1}[/mm] und dann in
> der Korrspondanztabelle nachschauen kann.
>  

den weg kennst du ja.. schwierig ist das ja nicht. für die korrespondenzen musst du ja eh oft "rumbasteln" bis eine passt.
den weg mit der pbz würde ich nicht nehmen, wüsste jetzt auch nicht was man dann mit dem i nachher anstellt

> Daher meine Frage, ich habe ähnliche Aufgaben bisher immer
> mit Partialbruchzerlegung gelöst.
>  
> Kann ich das hier auch machen? Meine Nullstellen sind ja
> [mm]s_{1}=-1+i[/mm] und [mm]s_{2}=-1-i.[/mm] Wie würde denn der Ansatz da
> aussehen, ich finde im Internet immer nur Ansätze bei der
> auch eine nichtkomplexe Nullstelle dabei ist.
>  
> Vielen Dank

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]