www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDiagonalisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Diagonalisierbarkeit
Diagonalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 17:43 Mi 27.04.2005
Autor: Sultan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

HIE LEUTE
ich hab ein problem mit einer teilaufgabe
hoffe ihr könnt mir helfen

Aufgabe:
a) sei f: V [mm] \to [/mm] V K-linear p [mm] \in [/mm] K[x] ein Polynom mit P(f)= 0 auf V. Man zeige, dass P ein Vielfaches des Minimalpolynoms  [mm] \mu_f [/mm] von f ist.
Meine Lösung [mm] bew:\exists [/mm] Q,R [mm] \in [/mm] K[x] mit P=Q+R und 0 [mm] \le [/mm] grad R< grad [mm] \mu [/mm]
Es gilt nach Vorr. P(f)=0
  [mm] \Rightarrow (Q\mu [/mm] + R) (f) =0
[mm] \RightarrowQ\mu(f) [/mm] + R(f)=0
da [mm] \mu(f) [/mm] =0      R(f) =0
[mm] \Rightarrow [/mm] R(f)= 0 und grad R < grad [mm] \mu [/mm]     widerspruch (minimaleigenschaft)
[mm] \Rightarrow [/mm] R=0
[mm] \Rightarrow [/mm] P = Q ßmu +R= [mm] q\mu [/mm]
[mm] \Rightarrow [/mm] p ist vielfaches von [mm] \mu [/mm]

b)sei [mm] \ge [/mm] und f:V [mm] \to [/mm] V ein Endomorphismus des [mm] \IC [/mm] - Vektorraums V mit [mm] f^{b}=id_v. [/mm]
man zeige, dass f diagonalisierbar.

Hoffe ihr könnt mir be teilaufgabe b weiter helfen
danke im vorraus
;-)

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Mi 27.04.2005
Autor: Julius

Hallo Sultan!

Es wäre für die Lesbarkeit vorteilhaft, wenn du unseren Formel-Editor benutztest. Vielleicht das nächste Mal? :-)

Der erste Teil der Aufgabe ist richtig.

Beim zweiten Teil weißt du, dass das Minimalpolynom ein Teiler von

$p(X) = [mm] X^b-1 [/mm] = [mm] \prod\limits_{i=1}^b (X-\varepsilon_i)$ [/mm]

ist, wobei [mm] $\varpepsilon_1,\ldots,\varepsilon_n$ [/mm] die paarweise verschiedenen $b$-ten Einheitswurzeln sind.

Eine lineare Abbildung ist aber genau dann diagonalisierbar, wenn ihr Minimalpolynom in Linearfaktoren zerfällt.

Fertig. :-)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]