www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonalisierung einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierung einer Matrix
Diagonalisierung einer Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung einer Matrix: Eine kleine Frage
Status: (Frage) beantwortet Status 
Datum: 19:56 So 05.02.2012
Autor: Softie

Aufgabe
Matrix:

1 t 0
t 1 0
0 t 1


a) Zeigen sie, dass die Matrix für jedes t element von IR  diagonalisierbar ist.
b) Geben Sie die Diagonalmatrix D von t an ,welche nach Diagonalisierung von M entsteht.

Ertmal Eigenwertberechnung :

1-Lambda   t        0
t     1- Lambda     0
0          t     1-Lambda

mit der Regel von Sarrus komme ich auf :

( 1- [mm] Lambda)^3 [/mm] + t + [mm] t^2 [/mm]
- ( (1 - Lambda) + t(1 - Lambda) + [mm] t^2 [/mm] (1 - Lambda) )

Ab hier komme ich nicht mehr weiter ,weil ich nicht weiß wie ich diesen Term zusammenfassen soll und wie ich dann die Eigenwerte berechnen kann.




Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: matheboard .leider ohne Erfolg ;/

        
Bezug
Diagonalisierung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 05.02.2012
Autor: MathePower

Hallo Softie,

[willkommenmr]


> Matrix:
>  
> 1 t 0
>  t 1 0
>  0 t 1
>  
>
> a) Zeigen sie, dass die Matrix für jedes t element von IR  
> diagonalisierbar ist.
>  b) Geben Sie die Diagonalmatrix D von t an ,welche nach
> Diagonalisierung von M entsteht.
>  Ertmal Eigenwertberechnung :
>
> 1-Lambda   t        0
>  t     1- Lambda     0
>  0          t     1-Lambda
>  
> mit der Regel von Sarrus komme ich auf :
>  
> ( 1- [mm]Lambda)^3[/mm] + t + [mm]t^2[/mm]
> - ( (1 - Lambda) + t(1 - Lambda) + [mm]t^2[/mm] (1 - Lambda) )
>


Nach der Regel von Sarrus kommt das nicht heraus.


> Ab hier komme ich nicht mehr weiter ,weil ich nicht weiß
> wie ich diesen Term zusammenfassen soll und wie ich dann
> die Eigenwerte berechnen kann.
>  
>
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt: matheboard .leider ohne Erfolg ;/


Gruss
MathePower

Bezug
                
Bezug
Diagonalisierung einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 So 05.02.2012
Autor: Softie

Ist [mm] -Lambda^3 [/mm] + [mm] 3*Lambda^2 [/mm] - [mm] Lambda(2-t-t^2) [/mm]  richtig ?

Der Satz von Saarus besagt doch nur ,dass ich drei Diagonale "Zeilen" von "oben nach" unten addieren und von dieser Summe werden die Diagoanalen "Zeilen" von unten "nach oben" von dieser Summe subtrahiert. Genau wie bei Wikipedia erklärt.




Bezug
                        
Bezug
Diagonalisierung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 05.02.2012
Autor: Kimmel

Laut meinen Rechnungen stimmt der Term immernoch nicht.
Nach Anwendung der Sarrus-Regel sieht es bei mir so aus:
[mm] (1 - \lambda)^3 - (1 - \lambda)t^2 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]