www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDiagonalisierung quadr. Formen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Diagonalisierung quadr. Formen
Diagonalisierung quadr. Formen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung quadr. Formen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 13:48 Di 01.05.2007
Autor: stofffffel

Aufgabe
Sei F(x,y,z) = [mm] 4x^2+y^2+z^2-4xy+4xz-3yz [/mm] quadratische Form über [mm] \IR. [/mm] Finde Diagonalform [mm] G(a_{1},a_{2},a_{3}) [/mm] = [mm] \summe_{i=1}^{3} \varepsilon_{i}^2, \varepsilon_{i}=0, \pm1, [/mm] von F und den entsprechendnen Variablenwechsel mit einer invertierbaren Matrix.  

Hallo Ihr Lieben...

also bei dieser Aufgabe habe ich das Problem, dass wir das erst morgen in der Vorlesung durchnehmen, ich das Übungsblatt aber bis Freitag fertig haben muss und der Rest der Woche sehr stressig wird, weil ich noch eine KLausur schreiben muss...
Also auf gut Deutsch gesagt, ich hab da keine Ahnung wir ihch vorgehen muss, kann mir nur irgendwie denken, dass es was mit Eigenwerten und Eigenvektoren zu tun hat, mehr weiss ich aber dann auch nicht...

ich wäre euch wirklich dankbar, wenn mir einer klar machen könnte was ich da zu tun habe...

vielen lieben dank schon mal im vorraus!!!

Stofffffel

        
Bezug
Diagonalisierung quadr. Formen: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Di 01.05.2007
Autor: stofffffel

Mir ist leider ein Fehler unterlaufen...
es soll heissen : [mm] G(a_{1}, a_{2},a_{3}) [/mm] = [mm] \summe_{i=1}^{3} \varepsilon_{i}^2 a_{i}^2, \varepsilon_{i} [/mm] = 0, [mm] \pm1 [/mm]

Sorry, aba ich hoffe ihr helft mir trotzdem

Bezug
                
Bezug
Diagonalisierung quadr. Formen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:12 Mi 02.05.2007
Autor: stofffffel

Halli hallo...

ich habe mich jetz mal dran versucht und konnte jetzt aus der quadratischen form eine matrix A ausrechnen die wie folgt lautet:

[mm] A=\pmat{ 4 & -2 & 2 \\ -2 & 1 & -1,5 \\ 2 & -1,5 & 1} [/mm]

wie kann ich die jetzt in die diagonalform bringen??? wir haben da ein sehr kompliziertes verfahren kennen gelernt, dass ich aba bei eine 3*3 matrix nicht anwenden kann sondern nur bei einer 2*2 matrix...

wäre super wenn mir jemand weiter helfen könnte!!!

vielen lieben dank schonmal

Bezug
        
Bezug
Diagonalisierung quadr. Formen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Sa 05.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]