www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonlaisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Diagonlaisierbarkeit
Diagonlaisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonlaisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Mi 15.02.2012
Autor: MissPocahontas

Aufgabe
A [mm] \in [/mm] Mat(n,K) ist genau dann diagonalisierbar, wenn A transponiert diagonalisierbar ist.

hey ;)
Ich hab zu obiger Aufgabe absolut keine Idee...Reicht es denn, wenn ich beweise, dass die Eigenwerte die gleichen sind?

        
Bezug
Diagonlaisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 15.02.2012
Autor: schachuzipus

Hallo MissPocahontas,


> A [mm]\in[/mm] Mat(n,K) ist genau dann diagonalisierbar, wenn A
> transponiert diagonalisierbar ist.
>  hey ;)
>  Ich hab zu obiger Aufgabe absolut keine Idee...Reicht es
> denn, wenn ich beweise, dass die Eigenwerte die gleichen
> sind?  

Nutze die Definition:

[mm]A[/mm] diagonalisierbar, wenn es eine Diagonalmatrix [mm]D[/mm] gibt, zu der [mm]A[/mm] ähnlich ist.

Dh. es gibt eine invertierbare Matrix [mm]T[/mm] mit [mm]A=TDT^{-1}[/mm]

Was heißt das für [mm]A^t[/mm] ?

Andersherum genauso ...

Gruß

schachuzipus


Bezug
                
Bezug
Diagonlaisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Mi 15.02.2012
Autor: MissPocahontas

Dann ist doch A transponiert = T transponiert mal A D transponiert mal T transponiert. Aber warum hilft das?

Bezug
                        
Bezug
Diagonlaisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 15.02.2012
Autor: fred97


> Dann ist doch A transponiert = T transponiert mal A D
> transponiert mal T transponiert.

Unfug !

> Aber warum hilft das?



Wir haben: $ [mm] A=TDT^{-1} [/mm] $

Dann ist     $ [mm] A^t=(T^{-1})^tD^tT^t$ [/mm]

Das hilft ? (hoffentlich !)

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]