www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDiffeomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Diffeomorphismen
Diffeomorphismen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismen: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 10:54 Do 07.06.2007
Autor: Coco84

Aufgabe
Die Sphäre [mm] S^{2} \subset \IR^{3}, [/mm] gegeben durch [mm] x^{2}+y^{2}+(z-1)^{2}=1 [/mm] kann durch stereographische Porjektion fast vollständig auf die Ebene abgebildet werden. Sei also [mm] \pi1: S^{2}- [/mm] {N} [mm] \to \IR^{2} [/mm] diese Projektion, die einen Punkt p=(x,y,z) der Sphäre  [mm] S^{2} [/mm] ohne den Nordpol N=(0,0,2) auf den Schnittpunkt der xy-Ebene mit der Geraden, die N und p verbildet, abbildet. Sei weiterhin (u,v)= [mm] \pi1(x,y,z), [/mm] wobei (x,y,z) [mm] \in S^{2}- [/mm] {N} und (u,v) [mm] \in [/mm] xy-Ebene.

a) Zeige, dass [mm] \pi1^{-1}: \IR^{2} \to S^{2} \subset \IR [/mm] den Punkt (u,v) auf ( 4u/ [mm] u^{2}+v^{2}+4, [/mm] 4v/ [mm] u^{2}+v^{2}+4, 2(u^{2}+v^{2})/ u^{2}+v^{2}+4) [/mm] abbildet.

b) Zeige, dass durch zwei stereographische Projektionen ein Atlas der Sphäre bestimmt ist, dh dass [mm] S^{2} [/mm] lokal (nämlich auf [mm] S^{2}- [/mm] {N} und auf [mm] S^{2}- [/mm] {S}) durch Abbildungen [mm] \gamma [/mm] i:= [mm] \pi i^{-1}, [/mm] i=1, 2 beschrieben ist und dass diese [mm] C^{1}-verträglich [/mm] sind.
Für die [mm] C^{1}-Verträglichkeit [/mm] muss man zeigen, dass [mm] f:=\pi2 \circ \pi 1^{-1} [/mm] auf [mm] \pi [/mm] 1(  [mm] S^{2}- [/mm] {N, S} [mm] \subset \IR^{2} [/mm] bzw g:= [mm] \pi1 \circ \pi 2^{-1} [/mm] auf [mm] \pi [/mm] 2(  [mm] S^{2}- [/mm] {N, S}) Diffeomorphismen sind, wobei S:= (0,0,0). Zeige hier nur, dass f Diffeomorphismus ist.

Hallo zusammen!

zu a) Hier habe ich zuerst versucht die Umkehrfunktion von [mm] \pi [/mm] zu erstellen, habe aber dann Probleme diese auf den Punkt abzubilden. Ich bin mir hier nicht ganz sicher, wie man vorgehen muss.

zu b) Da hier zu zeigen ist, dass f ein Diffeomorphismus ist, muss ich ja zeigen, dass f stetig und differenzierbar ist. Allerdings bin ich mir auch hier nicht sicher, wie ich die ganzen Nebeninformationen, die gegeben sind, mit in den Beweis bringen kann.

Ich würde mich freuen, wenn jemand meine Fragen beantworten würde bzw ein paar Tipps oder Hinweise hätte, wie ich daran gehen kann.

Vielen Dank
Coco

        
Bezug
Diffeomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 07.06.2007
Autor: Leopold_Gast

a) geht doch wie in der Schule: Gleichung der Geraden durch die Punkte [mm]N = (0,0,2)[/mm] und [mm]q = (u,v \, [,0])[/mm] aufstellen und die Gerade mit der Sphäre [mm]x^2 + y^2 + (z-1)^2 = 1[/mm] schneiden. Das ergibt zwei Schnittpunkte: der eine ist von vorneherein klar, nämlich [mm]N[/mm], der andere ist der gesuchte Punkt [mm]p = \pi_1^{\, -1}(q)[/mm] auf der Sphäre.

Und ganz analog kann man übrigens [mm]\pi_1[/mm] selbst finden. Das Ergebnis ist

[mm](u,v) = \pi_1(x,y,z) = \left( \frac{2x}{2 - z} \, , \, \frac{2y}{2 - z} \right)[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]