www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDiffeomorphismus Einheitskugel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Diffeomorphismus Einheitskugel
Diffeomorphismus Einheitskugel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Mo 25.03.2013
Autor: Matts

Aufgabe
Geben sie einen Diffeomorphismus zwischen den beiden Flächen $S = [mm] \{(x,y,z)\in \IR^3 : x^2+y^2+z^2 =1, -1

Nun ich habe mir beide Flächen skizziert. S ist die Einheitskugel und H ist ein einschaliges Hyperboloid. Dass die beiden Flächen zueinander diffeomorph sind, kann ich mir gut vorstellen. Der Schnitt mit der x-y-Ebene (z=0) ist für beide Flächen ein Kreis mit Radius 1, welcher unter der Abbildung (gesuchter Diffeomorphismus) [mm] $\phi: [/mm]  S [mm] \rightarrow [/mm] H$ bzw. $ [mm] \phi^{-1}:H \rightarrow [/mm] S$ nicht verhänder wird. Wird nun die EInheitskugel auf das einschalige Hyperboloid abgebildet, wird die obere, bzw. die untere Halbkugel "auseinandergerissen".
Mit der Definition eines Diffeomorphismuses komme ich leider auch nicht weiter, da ich nicht weiss, wie sich eine Funktion [mm] $\phi$ [/mm] finden lässt, so dass sie bijektiv ist und sowohl [mm] $\phi$ [/mm] und [mm] $\phi^{-1}$ [/mm] stetig differenzierbar sind.

Vielen Dank, Matts

        
Bezug
Diffeomorphismus Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Di 26.03.2013
Autor: Helbig


> Geben sie einen Diffeomorphismus zwischen den beiden
> Flächen [mm]S = \{(x,y,z)\in \IR^3 : x^2+y^2+z^2 =1, -1
> und [mm]H = {(x,y,z)\in \IR^3 : x^2+y^2 - z^2 =1\ }\subset\IR^3[/mm]
> an.
>  Nun ich habe mir beide Flächen skizziert. S ist die
> Einheitskugel und H ist ein einschaliges Hyperboloid. Dass
> die beiden Flächen zueinander diffeomorph sind, kann ich
> mir gut vorstellen. Der Schnitt mit der x-y-Ebene (z=0) ist
> für beide Flächen ein Kreis mit Radius 1, welcher unter
> der Abbildung (gesuchter Diffeomorphismus) [mm]\phi: S \rightarrow H[/mm]
> bzw. [mm]\phi^{-1}:H \rightarrow S[/mm] nicht verhänder wird. Wird
> nun die EInheitskugel auf das einschalige Hyperboloid
> abgebildet, wird die obere, bzw. die untere Halbkugel
> "auseinandergerissen".
> Mit der Definition eines Diffeomorphismuses komme ich
> leider auch nicht weiter, da ich nicht weiss, wie sich eine
> Funktion [mm]\phi[/mm] finden lässt, so dass sie bijektiv ist und
> sowohl [mm]\phi[/mm] und [mm]\phi^{-1}[/mm] stetig differenzierbar sind.
>  

Hallo Matts,

die Menge S ist die Oberfläche der Einheitskugel ohne die Pole (0, 0, -1) und (0, 0, 1).  Die Menge H schneidet die x-z-Ebene in den beiden (!) Ästen der Hyperbel [mm] $x^2- z^2 [/mm] = [mm] 1\,.$ [/mm] Du erhältst H, indem Du einen der Hyperbeläste um die z-Achse rotierst.

Baue Dir zunächst einen Diffeomorphismus vom Einheitskreis (ohne Pole) und der Hyperbel. Dies scheint einfacher und mag helfen, die Aufgabe zu lösen.

Gruß,
Wolfgang


Bezug
                
Bezug
Diffeomorphismus Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Di 26.03.2013
Autor: Matts

Danke Wolfgang für deine Antwort und deine Ergänzungen zu meinen Überlegungen. Je mehr ich mich mit der Aufgabe beschäftige, desto verwirrter werde ich. Ich versuche mitlerweilen die vereinfachte Variante (Einheitskreis ohne die Pole diffeomorph zur Hyperbel). Doch so blöd es klingen mag, ich weiss bei bestem Willen nicht, WIE ich eine solche Funktionen finden soll.

Gruss, Matts

Bezug
                        
Bezug
Diffeomorphismus Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Di 26.03.2013
Autor: Sax

Hi,

parametrisiere die eine Hälfte des Kreises :  x(t) = cos (t) ,  z(t) = sin (t) ,  $ [mm] -\bruch{\pi}{2} [/mm] < t < [mm] \bruch{\pi}{2} [/mm] $ ,
bilde das Intervall $ [mm] -\bruch{\pi}{2} [/mm] < t < [mm] \bruch{\pi}{2} [/mm] $ bijektiv auf das Intervall  [mm] $-\infty [/mm] < t' < [mm] \infty [/mm] $ ab,
benutze die Parameterdarstellung  x'(t') = cosh (t') ,  z'(t') = sinh (t')  um einen Zweig der Hyperbel zu erhalten,
analog für den anderen Teil.

Gruß Sax.

Bezug
                                
Bezug
Diffeomorphismus Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Di 26.03.2013
Autor: Matts

Danke für deine Hilfestellung.

$ tan : [mm] (-\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow \IR [/mm] $
$ [mm] tan^{-1} [/mm] : [mm] \IR \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2}) [/mm] $

Also ist der Tagens eine Funktion, welche das gewünschte Intervall bijektiv abbildet.

Nun wird zum Beispiel x(0) = cos(0)  = 1  auf x'(tan(0)) = cosh(tan(0)) = 1 abgebildet.
Also bekomme ich mit ( cosh(tan(t)), sinh(tan(t)) ) die Werte des einten Zweigs der Hyperbel, für alle t der Parametrisierung des Kreises?

Gruss, Matts




Bezug
                                        
Bezug
Diffeomorphismus Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:16 Mi 27.03.2013
Autor: Helbig


> Danke für deine Hilfestellung.
>  
> [mm]tan : (-\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow \IR[/mm]
>  
> [mm]tan^{-1} : \IR \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})[/mm]
>  
> Also ist der Tagens eine Funktion, welche das gewünschte
> Intervall bijektiv abbildet.
>
> Nun wird zum Beispiel x(0) = cos(0)  = 1  auf x'(tan(0)) =
> cosh(tan(0)) = 1 abgebildet.
> Also bekomme ich mit ( cosh(tan(t)), sinh(tan(t)) ) die
> Werte des einten Zweigs der Hyperbel, für alle t der
> Parametrisierung des Kreises?

Mit [mm] $\tan [/mm] t= {z [mm] \over [/mm] x}$ erhältst Du einen Diffeomorphismus

    $(x, [mm] z)\mapsto \left({ x \over |x|}\cosh {z \over |x|},\; \sinh {z\over |x|}\right)$ [/mm]

vom Einheitskreis ohne Pole auf beide Hyperbeläste.

Gruß,
Wolfgang

>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]