www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDiffeomorphismus/Homöomorphi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Diffeomorphismus/Homöomorphi
Diffeomorphismus/Homöomorphi < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus/Homöomorphi: Komme einfach nicht weiter...
Status: (Frage) beantwortet Status 
Datum: 22:06 Di 12.04.2005
Autor: ThommyM

Ich habe eine Frage zu dem Beweis folgenden Satzes:

Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm] und [mm]f: U \to V[/mm] ein Homöomorphismus.

Dann gilt:
[mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein Diffeomorphismus.


Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm]. Dazu werden zunächst folgende Reduktionen durchgeführt:
(a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu zeigen.
Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm] Ist das Verlangte für g gezeigt, so folgt der allgemeine Fall für f in x.

(b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm]. Dann gilt mit der Kettenregel:
[mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
Also: Ist Satz im Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
[mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm] gezeigt.

(c) Nach (a) und (b) ist also zu zeigen:
Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.

Reduktion (a) verstehe ich ja. Aber wie kommt man denn in (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das doch eine Matrix, oder nicht? Wie kann man denn dann die Kettenregel anwenden, dazu müsste man doch eine Matrix ableiten?
Den Rest von (b) verstehe ich dann, aber (3) macht mir wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm] gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man jetzt alles auf [mm]K ° f[/mm] an?


        
Bezug
Diffeomorphismus/Homöomorphi: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 15.04.2005
Autor: Julius

Hallo Thomas!

> Ich habe eine Frage zu dem Beweis folgenden Satzes:
>  
> Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig
> differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm]
> und [mm]f: U \to V[/mm] ein Homöomorphismus.
>  
> Dann gilt:
>  [mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein
> Diffeomorphismus.
>  
>
> Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm].
> Dazu werden zunächst folgende Reduktionen durchgeführt:
>  (a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu
> zeigen.
>  Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die
> gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm]
> Ist das Verlangte für g gezeigt, so folgt der allgemeine
> Fall für f in x.
>  
> (b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm].
> Dann gilt mit der Kettenregel:
>  [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
>  Also: Ist Satz im
> Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
>  [mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
>  
> Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm]
> gezeigt.
>  
> (c) Nach (a) und (b) ist also zu zeigen:
>  Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.
>  
> Reduktion (a) verstehe ich ja. Aber wie kommt man denn in
> (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man
> [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das
> doch eine Matrix, oder nicht?

Nun, wie lautet die Kettenregel:

$d(K [mm] \circ [/mm] f)(0) = dK(f(0)) [mm] \cdot [/mm] df(0)$.

Wir müssen also $dK$ an der Stelle $f(0)$ berechnen.

Nun ist aber [mm] $K=(df(0))^{-1}$ [/mm] eine lineare Abbildung, nämlich die folgende:

$K : [mm] \begin{array}{ccc} \IR^d & \to &\IR^d\\[5pt] x & \mapsto & (df(0))^{-1} \cdot x.\end{array}$. [/mm]

Und das Differential einer linearen Abbildung, die durch eine Matrizenmultiplikation gegeben ist, ist immer konstant gleich der Matrix selbst (die beste lineare Annäherung an eine lineare Funktion ist die lineare Funktion selbst). Daher gilt:

$dK [mm] \equiv (df(0))^{-1}$, [/mm]

also insbesondere:

$dK(f(0)) = [mm] (df(0))^{-1}$. [/mm]

Jetzt klar? :-)


>  Wie kann man denn dann die
> Kettenregel anwenden, dazu müsste man doch eine Matrix
> ableiten?
>  Den Rest von (b) verstehe ich dann, aber (3) macht mir
> wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm]
> gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man
> jetzt alles auf [mm]K ° f[/mm] an?

Genau das. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]