www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentailgleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differentailgleichungssystem
Differentailgleichungssystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentailgleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 So 27.08.2006
Autor: henniez-swisswater

Aufgabe
Lösen Sie folgendes lineare Differentailgleichungssystem: [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] * y + [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] = y'  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo erstmals. Also ich habe da einige schwierigkeinten mit dieser Aufgabe. Ich habe rausgefunden, dass ich zuerst die homogene Gleichung lösen soll. Mit der Eigenwertbestimmung sollte das je einfach gehen, leider hat diese Matrix meiner Meinung nach nur 1 Eigenwert, nämlich 1.
Ich kann nun die  Matrix A :=  [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] in JNF (A tilde) bringen um [mm] e^{ A } [/mm] zu berechenen. Das wäre dann [mm] P^{-1} e^{ A tilde }P [/mm]
Meine Basis des Lösungsraums des DGLsystems wären dann die Spaltenverktoren der Matrix [mm] e^{A} [/mm]

Stimmt das soweit?

Eine Frage die ich noch nicht beantworten konnte ist, wie sieht [mm] e^{A tilde} [/mm] aus. Also [mm] e^{\pmat{ 1& 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1}}. [/mm]



Jetzt kommt mein noch grösses Problem. Wie kann ich den Vektor [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] in die Lösung "einbauen"?

Ich hoffe jemand kann mir weiterhelfen und danke schon im voraus.

mfg henniez-swisswater

        
Bezug
Differentailgleichungssystem: Tipps
Status: (Antwort) fertig Status 
Datum: 14:11 Mo 28.08.2006
Autor: banachella

Hallo,

[willkommenmr]

Leider hast du dich bei der Berechnung der JNF verrechnet, es gilt [mm] $\tilde A=\pmat{1&0&0\\0&1&1\\0&0&1}$. [/mm] Hiermit ist die Berechnung von [mm] $e^{\tilde At}$ [/mm] sehr viel leichter, da [mm] $\tilde A^n=\pmat{1&0&0\\0&1&n\\0&0&1}$. [/mm]

Nun zur speziellen Lösung. Wenn du einen Vektor $x$ finden kannst, so dass [mm] $Ax=\vektor{-22\\7\\-12}$, [/mm] dann wäre $x$ eine spezielle Lösung.

Kommst du jetzt auf die Lösung?

Gruß, banachella

Bezug
                
Bezug
Differentailgleichungssystem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:00 Di 29.08.2006
Autor: henniez-swisswater

Aufgabe
  Lösen Sie folgendes lineare Differentailgleichungssystem: $ [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * y + $ [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm] $ = y'

ok, dank erstmals. ich habe jetzt mal eine lösung. Könnte mir jemand helfen und sagen, ob ich die aufgabe so richtig gelöst habe?

Meine Lösung sieht folgendermassen aus:


A = [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm]

A in JNF [mm] \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm]

Eine Lösung der homogenen Gleichung [mm] \pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11}*y [/mm]  = y' ist [mm] e^{t*\pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}} [/mm]

um [mm] e^{t * \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}} [/mm]  explizit zu berechnen spalte ich [mm] t*\pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm] in [mm] t*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm] + [mm] t*\pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0} [/mm] auf

somit ist [mm] e^{t * \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}}=e^{t * \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}}*e^{t * \pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0}}=\pmat{ e^{t} & 0 & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}}*\pmat{ 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}} [/mm]

[mm] \Delta=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}} [/mm] sollte nun das Lösungsfundamentalsystem sein.

Da [mm] det(\Delta)\not=0 \exists \Delta^{-1}=\pmat{ e^{-t} & -t*e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-t}} [/mm]

Um nun die inhomogene Gleichung zu lösen verwende ich Variation der Konstanten.

[mm] L=\Delta(*c(t) [/mm] und L löse die inhomogene Gleichung

[mm] L'=\Delta'*c(t)+\Delta*c'(t) [/mm]

einsetzen in Anfangsgleichung (inhomogene Gl) y'=L' und y=L

[mm] \Rightarrow \Delta'*c(t)+\Delta*c'(t)=\pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * [mm] \Delta*c(t) [/mm] + $ [mm] \pmat{ -22 \\ 7 \\ -12 } [/mm]

[mm] \Rightarrow \Delta'=\pmat{ 15 & 7 & -21 \\ -4 & -1 & 6 \\ 8 & 4 & -11} [/mm] $ * [mm] \Delta [/mm] und [mm] \Delta*c'(t)=b [/mm]

[mm] \Rightarrow c(t)=\integral_{}^{}{\Delta^{-1}*\pmat{ -22 \\ 7 \\ -12 } dt}=\integral_{}^{}{\pmat{ e^{-t} & -t*e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-t}}*\pmat{ -22 \\ 7 \\ -12 } dt}=\integral_{}^{}{\pmat{ -22*e^{-t}-7te^{-t} \\ 7e^{-t} \\ -12e^{-t} } dt}=\pmat{ (7t+29)e^{-t}\\ -7e^{-t} \\ 12e^{-t} } [/mm]

[mm] \Rightarrow L=\pmat{ e^{t} & t*e^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{t}}*\pmat{ (7t+29)e^{-t}\\ -7e^{-t} \\ 12e^{-t} }=\pmat{ (7t+29)e^{2t}-7t \\ -7 \\ 12 } [/mm]

[mm] \Rightarrow y=\pmat{ (7t+29)e^{2t}-7t \\ -7 \\ 12 }+c1*\pmat{ e^{t} \\ 0 \\ 0 }+c2*\pmat{ te^{t}\\ e^{t} \\ 0 }+c3*\pmat{ 0 \\ 0 \\ e^{t} } [/mm]


Wenn ich mir das so ansehe glaube ichnicht, dass viel an der Rechnung stimmt. Der Weg ist ähnlich zu einem 1 Dimensionalen Beispiel aus einem Analysis Script. Aber meine Rechnung scheint mir ein riesen Gebastel zu sein. Ich hoffe, dass trotzdem das eine oder andere stimmt.


mfg henniez und danke schon im voraus

ps: ich habe jetzt erst bemerkt, dass ich die Matrix der homogenen Gleichung nicht wieder zu der ursprünglichen Basis zurückgeführt habe. Folglich wäre das Lösungsfundamentalsystem anders. Trotzdem wäre ich froh, wenn mir jemand sagen könnte, ob dies das richtige Verfahren ist, um die Diffgleichung zu lösen. mfg nochmals:P

Bezug
                        
Bezug
Differentailgleichungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Fr 01.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]