www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 So 30.01.2011
Autor: Kueken

Aufgabe
Vier Ameisen, die sich zur Zeit t=0 auf den Ecken eines im Ursprung zentrierten Quadrats befinden, beginnen sich gegen den Uhrzeigersinn zu bewegen, wobei sich jede genau in Richtung der vor ihr liegenden Ameise bewegt. Zeigen Sie durch Lösen der entsprechenden Differentialgleichung, dass die Trajektorie einer Ameise durch eine logarithmische Spirale [mm] r(\phi) [/mm] = [mm] r_{0}*e^{-\phi} [/mm] beschrieben wird.

Hi!

Ich habe mir ein Bildchen gemalt und versuche verzweifelt die "entsprechende" Differentialgleichung aufzustellen. Aber ich krieg es nicht hin. Ich weiß gar nicht wie ich überhaupt eine Bahnkurve von einer Ameise hinbekomme. Weil wir im 2d Raum sind und ein phi vorkommt, denke ich mal dass Polarkoordinaten angebracht sind.

Bin für jede Hilfestellung dankbar.

Lieben Gruß
Kerstin

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 30.01.2011
Autor: qsxqsx

Hallo,

Am besten ein Koordinatensystem wählen, bei dem der Nullpunkt mit dem Mittelpunkt des Quadrates zusammenfällt.

Die Richtung in die sich die Ameise in einem kleinen Moment bewegt ist doch die Richtung des Richtungsvektors von der Ameise zur vorderen Ameise.
Geben wir dem ganzen eine Zeit.
Erste Ameise: Wir können die x-Koordinate mit einer Funktion [mm] f_{1}(t) [/mm] beschreiben und die y-Koordinate mit [mm] f_{2}(t). [/mm]
Zweite Ameise: Wir können die x-Koordinate mit einer Funktion [mm] g_{1}(t) [/mm] beschreiben und die y-Koordinate mit [mm] g_{2}(t). [/mm]
usw.

[mm] \vektor{\bruch{df_{1}(t)}{dt} \\ \bruch{df_{2}(t)}{dt}} [/mm] = [mm] \vektor{g_{1}(t) \\ g_{2}(t)} [/mm] - [mm] \vektor{f_{1}(t) \\ f_{2}(t)} [/mm]

r(t) = [mm] \wurzel{f_{1}(t)^{2} + f_{2}(t)^{2}} [/mm]
[mm] \phi(t) [/mm] = [mm] arctan(\bruch{f_{2}(t)}{f_{1}(t)}) [/mm]

Hab jetzt (noch) nicht alles durchgerechnet bzw. weiss auch nicht ob man so weiterkommt aber vielleicht reicht dir das schon.
Wenn man die Symetrie der Aufgabenstellung beachtet kann man sicher auch noch schneller und einfacher weiterkommen.

Gruss

Bezug
        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 So 30.01.2011
Autor: leduart

Hallo
einfacher in polarkoordinaten, noch einfacher komplex.
aus deinem bildchen muss dir klar sein:
KO ursprung in der mitte des quadrats. wenn der rechte punkt bei z ist, ist der punkt, den er verfolgt um 90° gedreht, also bei i*z die Richtung, in der er läuft also iz-z die Richtung der Differenz der Punkte.
damit hast du z'(t)=(-1+i)z(t) und siehst hoffentlich die lösung direkt.
wenn du lieber willst kannst du natürlich auch statt z den vektor [mm] (x,y)^T [/mm] nehmen, und die entsprechende Matrix
(x,y) um 90° gedreht ist (-y,x) also (x,y)'=(-y,x)-(x,y)

[mm]\vektor{x \\ y}'=\pmat{ -1 & -1 \\ 1 & -1 } *\vektor{x \\ y}[/mm] du siehst hoffentlich die Drehstreckung.
Gruss leduart


Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 So 30.01.2011
Autor: Kueken

hui, danke erstmal für die antworten. Komplex hatten wir noch gar nicht und Matrizen auch nicht (jedenfalls nicht in diesem Modul ;) ) naja, ich werds mal versuchen :D

Bezug
                        
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 So 30.01.2011
Autor: leduart

Hallo
statt der Marix kannst du ja einfach das Dgl systen hinschreiben, was davor steht.
2. die Losung einer Dgl. darf man immer "raten" und durch einsetzen bestätigen!
Gruss leduart


Bezug
                                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:40 So 13.02.2011
Autor: Kueken

ok, super werd ich mir merken. Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]