www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Bitte um Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:10 Sa 21.01.2006
Autor: kunzm

Aufgabe 1
Lösen Sie die DGL [mm] $y'=(y+c)^n$, [/mm] $c$ konstant, [mm] $n\in\mathbb{N}$, [/mm] für beliebige Anfangswerte [mm] $x_0,\,y_0$. [/mm] Sie können hierbei $z(x)=y(x)+c$ verwenden.

Aufgabe 2
Lösen Sie die DGL [mm] $y'+y+e^x\cdot y^3=0$, [/mm] $c$ konstant, für beliebige Anfangswerte [mm] $x_0,\,y_0$. [/mm] Sie können hierbei [mm] $z(x)=y^{-2}(x)$ [/mm] verwenden.

Hallo,

diesmal bäte ich um Durchsicht meiner Lösungen, da ich mir nicht ganz sicher bin was diese angeht. Die erste Aufgabe habe ich gelöst wie folgt:

Es sei [mm] $y'(x)=(y(x)+c)^n$, [/mm] wobei gilt:

[mm] $z(x)=y(x)+c\,\,\Leftrightarrow\,\,y(x)=z(x)-c\,\,\Leftrightarrow\,\,y'(x)=z'(x)$ [/mm]

[mm] $\Rightarrow$ $z'(x)\,=\,z^n(x)\,\,\Leftrightarrow\,\,\frac{dz(x)}{dx}\,=\,z^n(x)\,\,\Leftrightarrow\,\,\int\frac{1}{z^n(x)}\,dz(x)\,=\,\int [/mm] dx$

[mm] $\Rightarrow\,\forall\,\,n\,\not=\,1:$ [/mm]

[mm] $-\frac{1}{z^{n-1}(x)}\,=\,x\,\,\Leftrightarrow\,\,-z^{1-n}(x)\,=\,x\,\,\Leftrightarrow\, -(y(x)+c)^{1-n}\,=\,x\,\,\Leftrightarrow\,\,y(x)\,=\,(-x)^{1/(1-n)}+C$ [/mm]

Seien nun [mm] $y(x_0)\,=\,y_0$ [/mm] und [mm] $x_0:=0$. [/mm] Dann ist [mm] $C=y_0$, [/mm] und die Lösung lautet:

[mm] $y(x)\,=\,(-x)^{1-n}+y_0\,,\,\,\,$\scriptsize$(y(x)\in\mathbb{C}\forall\,x\in\mathbb{R}^+)$ [/mm]


[mm] $\Rightarrow$ [/mm] für [mm] $n\,=\,1:$ [/mm]

[mm] $\ln z(x)\,=\,x+C\,\,\Leftrightarrow\,\,y(x)+c\,=\,e^{x+C}\,=\,e^C\cdot e^x\,\,\Leftrightarrow\,\,y(x)\,=\,e^C\cdot e^x-c$ [/mm]

Seien nun [mm] $y(x_0)\,=\,y_0$ [/mm] und [mm] $x_0:=0$. [/mm] Dann ist, unter Berücksichtigung der Verschiebung $c$, [mm] $e^C=y_0$, [/mm] und die Lösung lautet:

[mm] $y(x)\,=\,y_0\,e^x$. [/mm]


Die zweite Aufgabe habe ich folgendermaßen gelöst:

Es ist gegeben:  

[mm] $y'+y+e^x\cdy^3\,=\,0\,\,\Leftrightarrow\,\,\frac{y'}{y^3}+y^{-2}+e^x\,=\,0\,\,\Leftrightarrow\,\,y'\cd y^{-3}+y^{-2}\,=\,-e^x$ [/mm]

Weiters sei nun [mm] $y^{-2}(x)\,=\,z(x)$ [/mm] und man erhält:

[mm] $y'(x)\cdy^{-3}(x)+z(x)\,=\,-e^x\,\,\Leftrightarrow\,\,y^{-3}(x)\,dy(x)\,=\,(-e^x-z(x))\,dx$ [/mm]

[mm] $\Rightarrow\,\,\inty^{-3}(x)\,dy(x)\,=\,\int(-e^x-z(x))dx\,\,\Leftrightarrow\,\,y^{-2}\,=\,e^x+Z(x)+C_1$ [/mm]

Es gilt gemäß Angabe:

[mm] $z(x)\,=\,y^{-2}(x)\,\,\Leftrightarrow\,\,\int z(x)\,=\,\int y^{-2}(x)\,\,\Leftrightarrow\,\,Z(x)\,=\,-y^{-1}(x)+C_2$ [/mm]

Man erhält also

[mm] $y^{-2}(x)\,=\,e^x-y^{-1}(x)+C\,\,\Leftrightarrow$ [/mm]

[mm] $y(x)\,=\,\pm\,$\large$\frac{i}{\sqrt{1-C-e^{2x}}}$\normalsize [/mm]

Seien nun [mm] $y(x_0)\,=\,\pm\,y_0$ [/mm] und [mm] $x_0:=0$. [/mm] Dann ist [mm] $C=y_0^{-2}$, [/mm] und die nicht eindeutige Lösung lautet:

[mm] $y(x)\,=\,\pm\,$\large$\frac{i}{\sqrt{1-e^{2x}-y_0^{-2}}}$\normalsize. [/mm]


Ich bitte um Verbesserungsvorschläge oder notwendige Korrekturen.
Vielen Dank schon mal,

Martin.


        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 21.01.2006
Autor: Astrid

Hallo Martin,

>  
> Es sei [mm]y'(x)=(y(x)+c)^n[/mm], wobei gilt:
>  
>
> [mm]z(x)=y(x)+c\,\,\Leftrightarrow\,\,y(x)=z(x)-c\,\,\Leftrightarrow\,\,y'(x)=z'(x)[/mm]
>  
> [mm]\Rightarrow[/mm]
> [mm]z'(x)\,=\,z^n(x)\,\,\Leftrightarrow\,\,\frac{dz(x)}{dx}\,=\,z^n(x)\,\,\Leftrightarrow\,\,\int\frac{1}{z^n(x)}\,dz(x)\,=\,\int dx[/mm]
>  

[ok]

> [mm]\Rightarrow\,\forall\,\,n\,\not=\,1:[/mm]
>  
> [mm]-\frac{1}{z^{n-1}(x)}\,=\,x\,\,\Leftrightarrow\,\,-z^{1-n}(x)\,=\,x\,\,\Leftrightarrow\, -(y(x)+c)^{1-n}\,=\,x\,\,\Leftrightarrow\,\,y(x)\,=\,(-x)^{1/(1-n)}+C[/mm]
>  

[notok] Hier steckt ein Fehler drin:

[mm]\int \bruch{1}{z^n} \, dz = \bruch{1}{1-n}z^{1-n}=\bruch{1}{(1-n)z^{n-1}}[/mm]


> [mm]\Rightarrow[/mm] für [mm]n\,=\,1:[/mm]
>  
> [mm]\ln z(x)\,=\,x+C\,\,\Leftrightarrow\,\,y(x)+c\,=\,e^{x+C}\,=\,e^C\cdot e^x\,\,\Leftrightarrow\,\,y(x)\,=\,e^C\cdot e^x-c[/mm]

>

[ok]

Vielleicht etwas schöner:

[mm] $...=Ke^x [/mm] -c$ für $K [mm] \in \IR$. [/mm]
  

> Seien nun [mm]y(x_0)\,=\,y_0[/mm] und [mm]x_0:=0[/mm].

Ist das so? Das hattest du in der Aufgabe nicht mit angegeben.

Zur zweiten Aufgabe:

>
> Die zweite Aufgabe habe ich folgendermaßen gelöst:
>  
> Es ist gegeben:  
>
> [mm]y'+y+e^x\cdy^3\,=\,0\,\,\Leftrightarrow\,\,\frac{y'}{y^3}+y^{-2}+e^x\,=\,0\,\,\Leftrightarrow\,\,y'\cd y^{-3}+y^{-2}\,=\,-e^x[/mm]
>  
> Weiters sei nun [mm]y^{-2}(x)\,=\,z(x)[/mm] und man erhält:
>  
> [mm]y'(x)\cdy^{-3}(x)+z(x)\,=\,-e^x\,\,\Leftrightarrow\,\,y^{-3}(x)\,dy(x)\,=\,(-e^x-z(x))\,dx[/mm]
>  
> [mm]\Rightarrow\,\,\inty^{-3}(x)\,dy(x)\,=\,\int(-e^x-z(x))dx\,\,\Leftrightarrow\,\,y^{-2}\,=\,e^x+Z(x)+C_1[/mm]

Hier scheint $y$ und $z$ ein wenig durcheinander zu gehen. Nach der Substitution erhälst du eine neue DGL wie folgt:

[mm] $z(x)=y^{-2}(x)$ [/mm]

und damit

[mm] $z'(x)=-2y^{-3}\cdot y'=-2y^{-3} \cdot (-y-e^xy^3)=...=2z+2e^x$ [/mm]

Diese DGL löst du nun, indem du erst die homogene Lösung berechnest und dann die Methode der Variation der Konstanten anwendest.

Ich hoffe, ich konnte dir helfen.

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]