www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialquotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Differentialquotient
Differentialquotient < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Sa 05.11.2011
Autor: DoubleHelix

Aufgabe
Zeigen Sie, dass [mm] |z|^2 [/mm] nicht differenzierbar (ohne Cauchy-Rieamannsche Differentialgleichungen)
ist.

Hallo,
Da ich nicht die Cauchy DGL benutzen darf dachte ich daran den Grenzwert des Differentialquotienten zu bilden.

[mm] \limes_{z\rightarrow\z0} \bruch{z^2 - z_0^2}{z-z_0} [/mm]

Den Betrag habe ich weggelassen, da hier sowieso ein quadrat steht.
Da ich nun [mm] \bruch{0}{0} [/mm] herausbekäme muss ich L'ospital anwenden und komme auf
[mm] \limes_{z\rightarrow\z0} \bruch{2*z - z_0^2}{1-z_0} [/mm]
Daraus  folgt aber [mm] \bruch{z_0*(z_0-2)}{z_0-1} [/mm] D.h. es existiert ein Grenzwert für alle [mm] z_0 \not= [/mm] 1.

Wenn ein Grenzwert existiert ist die Funktion differenzierbar.
Laut Angabe soll aber genau das Gegenteil der Fall sein.
Bitte um Hilfe

mfg
Double


        
Bezug
Differentialquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Sa 05.11.2011
Autor: notinX

Hallo,

> Zeigen Sie, dass [mm]|z|^2[/mm] nicht differenzierbar (ohne
> Cauchy-Rieamannsche Differentialgleichungen)
>  ist.
>  Hallo,
>  Da ich nicht die Cauchy DGL benutzen darf dachte ich daran
> den Grenzwert des Differentialquotienten zu bilden.
>  
> [mm]\limes_{z\rightarrow\z0} \bruch{z^2 - z_0^2}{z-z_0}[/mm]
>  
> Den Betrag habe ich weggelassen, da hier sowieso ein
> quadrat steht.

ich nehmen mal an, dass [mm] $z\in\mathbb{C}$ [/mm] und im Komplexen gilt allgemein [mm] $|z|^2\neq z^2$ [/mm]

>  Da ich nun [mm]\bruch{0}{0}[/mm] herausbekäme muss ich L'ospital
> anwenden und komme auf
>  [mm]\limes_{z\rightarrow\z0} \bruch{2*z - z_0^2}{1-z_0}[/mm]
>  
> Daraus  folgt aber [mm]\bruch{z_0*(z_0-2)}{z_0-1}[/mm] D.h. es
> existiert ein Grenzwert für alle [mm]z_0 \not=[/mm] 1.
>  
> Wenn ein Grenzwert existiert ist die Funktion
> differenzierbar.
>  Laut Angabe soll aber genau das Gegenteil der Fall sein.
>  Bitte um Hilfe
>  
> mfg
>  Double
>  

Gruß,

notinX

Bezug
                
Bezug
Differentialquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Sa 05.11.2011
Autor: DoubleHelix

Da hast du natürlich Recht!

Dann sage ich das z komplex ist. somit ist [mm] |z|^2=z*\overline{z} [/mm]
wobei [mm] \overline{z} [/mm] konjugiert komplex ist.

Nehme ich nun den ersten limes würde ich durch 0 dividieren
da [mm] z-z_0 [/mm] im Nenner steht. Ich wende wieder L'ospital an und komme auf:

[mm] \limes_{z\rightarrow\ z 0}\bruch{\overline{z}-z_0*\overline{z_0}}{1-z_0} [/mm]

irgendwie kommt mir das spanisch vor ;) bitte um Hilfe.

Bezug
                        
Bezug
Differentialquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Sa 05.11.2011
Autor: leduart

Hallo
1. warum sollte der GW denn 0 sein, das ist er auch nicht für das differenzierbare [mm] f(z)=z^2 [/mm] der differentialquotient muss nen GW genannt f'(z) haben .
2. du kannst doch L´Hopital nicht anwenden, wenn du nicht weisst, ob die fkt differenzierbar ist?
nimm mal (f(z+h)-f(z))/h  a) h=r*i r reell und h=r und h= [mm] r(cos\phi+isin˜phi) [/mm]  r gegen 0

gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]