www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Polynomiale Approximationen
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 19.11.2010
Autor: blackkilla

Hallo zusammen.

Es ist ja, dass die Approximation von [mm] e^x [/mm] folgendermassen lautet:

[mm] e^x\approx1+\bruch{x}{1!}+\bruch{x^2}{2!}+....+\bruch{x^n}{n!} [/mm]


Nun soll ich folgendes bestätigen:

[mm] e^{\gamma\wurzel{t/n}}\approx1+\gamma\wurzel{t/n}+(\gamma)^2t/2n [/mm]

Ich habe nun [mm] x=\gamma\wurzel{t/n} [/mm] gesetzt.

Doch meine eigentliche Frage ist, warum geht es nicht bis n sondern bis zur 2. Ordnung?

        
Bezug
Differentialrechnung: Abschätzung
Status: (Antwort) fertig Status 
Datum: 00:38 Sa 20.11.2010
Autor: Loddar

Hallo blackkilla!


Klar ist, dass mit steigender Anzahl der Summanden auch die Genauigkeit der Abschätzung ansteigt.

In der Aufgabenstellung ist nun lediglich die Genauigkeit von 3 Summanden gefordert. Dies erscheint auch ausreichend, da die genannten Funktionswerte der e-Funktion sehr nahe bei $x \ [mm] \approx [/mm] \ 0$ liegen.


Gruß
Loddar


Bezug
                
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Sa 20.11.2010
Autor: blackkilla

Ok dann mach ich einfach was gefragt ist. Dachte es sei ein spezieller Fall oder so... Danke :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]