www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Differentialrechnung
Differentialrechnung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Negativ werden
Status: (Frage) beantwortet Status 
Datum: 14:24 Sa 27.11.2010
Autor: blackkilla

Hallo zusammen

Die Ableitung von [mm] e^\sqrt{x}-3 [/mm]

ist ja

[mm] \bruch{1}{2}x^{-\bruch{1}{2}}e^\sqrt{x} [/mm]

Warum ist f'(x)>0

Kann [mm] \bruch{1}{2}x^{-\bruch{1}{2}} [/mm] nicht negativ werden, strebt sie nur gegen Null?

Danke im Voraus!

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Sa 27.11.2010
Autor: M.Rex

Hallo

Schreibe um,

[mm] $f'(x)=\bruch{1}{2}x^{-\bruch{1}{2}}e^\sqrt{x} [/mm] $
[mm] $=\bruch{1}{2x^{\bruch{1}{2}}}e^\sqrt{x} [/mm] $
[mm] $=\bruch{1}{2\wurzel{x}}e^\sqrt{x} [/mm] $

Und jetzt überlege mal, warum das nicht Null oder negativ werden kann.

Marius


Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Sa 27.11.2010
Autor: blackkilla

Der Nenner kann gar nicht negativ werden...

Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Sa 27.11.2010
Autor: M.Rex


> Der Nenner kann gar nicht negativ werden...

...was woran liegt?


Bezug
                                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 27.11.2010
Autor: blackkilla

Das x in der Wurzel muss ja positiv sein...

Bezug
                                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 27.11.2010
Autor: M.Rex


> Das x in der Wurzel muss ja positiv sein...

Wir nähern uns dem entscheidenden Argument.

Als Gegenbeispiel mal:

[mm] k(x)=\ln(x), [/mm] hier muss y auch positiv sein, sagt das etwas über den Funktionswert aus?

Marius


Bezug
                                                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Sa 27.11.2010
Autor: blackkilla

Wie meinst du das?

Bezug
                                                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 27.11.2010
Autor: M.Rex


> Wie meinst du das?

Es ist unwichtig, was du in die Wurzel hereinstecken darfst, wichtig ist, das, was du am Ende als Ergebnisse aus der Funktion [mm] q(x)=\wurzel{x} [/mm] herausbekommen kannst. Und diese Ergebnisse sind ....
Da die Ergebnisse einer e-Funktion auch nicht .... werden können, ist die Funktion [mm] f(x)=\bruch{1}{2\wurzel{x}}e^{\wurzel{x}} [/mm] ein Produkt aus zwei ... Faktoren, die Gesamtfunktion ist also ....

Marius


Bezug
                                                                
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Sa 27.11.2010
Autor: blackkilla

Positiv, positiv, positiv :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]