www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferentiation und Umkehrfkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differentiation und Umkehrfkt.
Differentiation und Umkehrfkt. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation und Umkehrfkt.: aufgabe a und b
Status: (Frage) beantwortet Status 
Datum: 22:35 Di 02.02.2010
Autor: monstre123

Aufgabe
(a) Bestimmen Sie die Ableitung der Umkehrfunktion von f(x)=tanx , [mm] x\in(\bruch{-\pi}{2} [/mm] , [mm] \bruch{\pi}{2}). [/mm]

(b) Gegeben sei die Funktion [mm] f(x)=\bruch{1}{e}x*lnx [/mm] mit dem Defintionsbereich [mm] D_{f}=[\bruch{1}{e} [/mm] , [mm] \infty]. [/mm] Berechnen Sie die erste Ableitung der Umkehrfunktion [mm] f^{-1} [/mm] im Punkt [mm] x_{0}=1 [/mm]

(a) keine ahnung was die umkehrfunktion von tanx ist, nur dass es arctan gibt ::(

(b) hier ist nur die produktregel in gebrauch oder?
was ist mit dem [mm] x_{0} [/mm] gemeint? muss ich die ableitung bilden und diesen wert einsetzen?

        
Bezug
Differentiation und Umkehrfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Di 02.02.2010
Autor: chrisno


>  (a) keine ahnung was die umkehrfunktion von tanx ist, nur
> dass es arctan gibt ::(

Da muss ich zurückfragen: Was ist für Dich eine Umkehrfunktion?

>  
> (b) hier ist nur die produktregel in gebrauch oder?
> was ist mit dem [mm]x_{0}[/mm] gemeint? muss ich die ableitung
> bilden und diesen wert einsetzen?

Ich würde sagen, Du besorgst Dir zuerst den Satz über die Ableitung der Umkehrfunktion. Dann wenden wir ihn bei Aufgabe a) an.

Zu b) Du benötigst die Ableitung der Umkehrfunktion. Es kann gut sein, dass dabei die Produktregel benötigt wird. Das werden wir dann sehen. Das [mm]x_{0}=1[/mm] hast Du richtig verstanden. Vielleicht tritt bei der Ausführung noch eine kleine Schwierigkeit auf.


Bezug
                
Bezug
Differentiation und Umkehrfkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Di 02.02.2010
Autor: monstre123

(a) wenn die umkehrfkt. von tanx arctan ist, dann ist die ableitung von f(x)=arctan --> [mm] f'(x)=1/1+x^{2} [/mm] für [mm] x\in\IR [/mm] aber ich brauche für [mm] x\in(-pi/2 [/mm] , pi/2). zudem wie kommt man überhaupt von f(x)=arctan nach f ', ich meine damit die herleitung?

(b) ???

Bezug
                        
Bezug
Differentiation und Umkehrfkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:10 Mi 03.02.2010
Autor: Stefan-auchLotti


> (a) wenn die umkehrfkt. von tanx arctan ist, dann ist die
> ableitung von f(x)=arctan --> [mm]f'(x)=1/1+x^{2}[/mm] für [mm]x\in\IR[/mm]
> aber ich brauche für [mm]x\in(-pi/2[/mm] , pi/2). zudem wie kommt
> man überhaupt von f(x)=arctan nach f ', ich meine damit
> die herleitung?
>  
> (b) ???

Hi!

Der Witz ist, dass man die Herleitung mithilfe von tan und arctan hinbekommt.

Die Formel lautet: $ [mm] \left(f^{-1}(y)\right)'=\frac{1}{f'(f^{-1}(y))} [/mm] $

Du setzt $ [mm] \tan [/mm] x:=f(x) $, die Ableitung ist bekanntermaßen $ [mm] f'(x)=1+\tan^2x [/mm] $. Du weißt, dass $ [mm] \arctan [/mm] x $ die Umkehrfunktion ist. Nun einsetzen. Desweiteren weißt du, dass der Wertebereich von $ [mm] \arctan [/mm] x $ gerade $ [mm] \left(-\frac{\pi}{2},\frac{\pi}{2}\right) [/mm] $ ist. Somit hast du alles, was du brauchst.

Bei b) bin ich auch gerade überfragt.

Grüße, Stefan.

Bezug
                        
Bezug
Differentiation und Umkehrfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Mi 03.02.2010
Autor: fred97


> (a) wenn die umkehrfkt. von tanx arctan ist, dann ist die
> ableitung von f(x)=arctan --> [mm]f'(x)=1/1+x^{2}[/mm] für [mm]x\in\IR[/mm]
> aber ich brauche für [mm]x\in(-pi/2[/mm] , pi/2). zudem wie kommt
> man überhaupt von f(x)=arctan nach f ', ich meine damit
> die herleitung?
>  
> (b) ???


Es ist f(e) = 1 = [mm] x_0, [/mm] somit ist [mm] $(f^{-1})'(1) [/mm] = 1/f'(e)$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]