Differenzengleichung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:20 Do 27.07.2006 | Autor: | gmai |
Aufgabe | Erzeugung eines Signals der Form [mm] $x[n]=A*sin(\theta_0n+\phi), n\ge0$ [/mm] mit der Differenzengleichung $$a_2x[n-2]+a_1x[n-1]+a_0x[n]=0$$.
Wie müssen die Koeffizienten und die Anfangsbedingungen gewählt werden, um Sinussignale mit vorgegebenen Parametern $A, [mm] \theta_0$ [/mm] und [mm] $\phi$ [/mm] zu erzielen? |
#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir jemand weiterhelfen wie ich hier vorgehe?
Danke.
mfg.
georg
|
|
|
|
Hallo!
Die Fundamentallösung einer Differenzengleichung 2. Grades ist [mm] $\{\lambda_1^n,\lambda_2^n\}$, [/mm] wobei das die paarweise verschiedenen - das nehmen wir jetzt der Einfachheit halber mal an - Nullstellen des charakteristischen Polynoms sind. Du musst also die Parameter so wählen, dass
$A [mm] *\sin(\theta n+\phi)=c_1\lambda_1^n+c_2\lambda_2^n$. [/mm]
Erinnere dich an folgende Darstellung des Sinus: [mm] $\sin(x)=\bruch 12\left(e^{ix}-e^{-ix}\right)$.Das [/mm] kannst du dir jetzt zunutze machen! Wähle [mm] $c_1=\bruch [/mm] 12 [mm] A*e^{i\phi}$, $c_2=\bruch [/mm] 12 [mm] A*e^{-i\phi}$ [/mm] und [mm] $\lambda_1=e^{i\theta}$, $\lambda_2=e^{-i\theta}$. [/mm] Dann gilt:
[mm] $c_1\lambda_1^n+c_2\lambda_2^n=\bruch [/mm] 12 [mm] A*e^{i\phi}*e^{i\theta*n}-\bruch [/mm] 12 [mm] A*e^{-i\phi}*e^{-i\theta*n}=\bruch [/mm] 12 [mm] *A*\left(e^{i(\theta*n+\phi)}- e^{-i(\theta*n+\phi)}\right)=A*\sin(\theta *n+\phi)$.
[/mm]
Jetzt musst du nur noch das charakteristische Polynom so bestimmen, dass es die richtigen Nullstellen hat!
Hast du eine Idee, wie du an die richtigen Anfangsbedingungen kommst?
Gruß, banachella
|
|
|
|