www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzengleichung Ordnung k
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Differenzengleichung Ordnung k
Differenzengleichung Ordnung k < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung Ordnung k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 Do 03.06.2010
Autor: ledun

Aufgabe
[mm] y_{n+3} [/mm] - [mm] y_{n+2} [/mm] + [mm] 2y_{n} [/mm] = [mm] 50n(-1)^n [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo hier erstmal mein Lösungsweg:

Ermitteln von [mm] z_{n}=z_{n+3} [/mm] - [mm] z_{n+2} [/mm] + [mm] 2z_{n}=0 [/mm] liefert über [mm] \lambda^3 [/mm] - [mm] \lambda^2 [/mm] + 2=0 --> [mm] \lambda_{1}=-1, \lambda_{2}=1+i, \lambda_{3}=1-i [/mm]

polarkoordinaten: [mm] \phi=\bruch{\pi}{4}, r=\wurzel{2} [/mm]

[mm] z_{n}= C_{1}*(-1)^n [/mm] + [mm] C_{2}*(\wurzel{2})^n*cos(\bruch{\pi*n}{4}) [/mm] + [mm] C_{3}*(\wurzel{2})^n*sin(\bruch{\pi*n}{4}) [/mm]

bis hierhin sollte kein fehler sein. ich verzweifel nur beim lösen des eingesetzten ansatzes für die partikulärlösung.

da [mm] r(n)=50*n*(-1)^n [/mm]

ansatz [mm] \overline{y}_{n}=n*(A_{0}+A_{1}n)*(-1)^n [/mm]

wenn ich das einsetze umstelle etc komme ich auf

[mm] A_{1}*(-10n-13)-5*A_{0}=50n [/mm]

was mir keine chance gibt die koeffizienten eindeutig zu bestimmen. ist der fehler vllt schon beim ansatz? dass man [mm] A_{0} [/mm] garnicht mit ins boot nehmen darf? nach meinem ansatz aus der vorlesung sollte allerdings alles so stimmen. kann mir wer helfen? danke!

        
Bezug
Differenzengleichung Ordnung k: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Fr 04.06.2010
Autor: Gonozal_IX

Hiho,

> [mm]A_{1}*(-10n-13)-5*A_{0}=50n[/mm]
>  
> was mir keine chance gibt die koeffizienten eindeutig zu
> bestimmen.

Klar kannst du die Koeffizienten mit nem Koeffizientenvergleich bestimmen:

[mm]A_{1}*(-10n-13)-5*A_{0}=50n \gdw -10A_1n - 13A_1 - 5A_0 = 50n \gdw -10A_1n - (13A_1 + 5A_0) = 50n [/mm]

Heisst jetzt nach Koeffizientenvergleich:

[mm] $-10A_1 [/mm] = 50 $
[mm] $13A_1 [/mm] + [mm] 5A_0 [/mm] = 0$

Also:

[mm] $A_1 [/mm] = -5$
$13*(-5) + [mm] 5A_0 [/mm] = 0 [mm] \gdw A_0 [/mm] = 13$

Da ich nicht weiss, ob es dir weiterhilft mal nur auf teilweise beantwortet :-)

MFG,
Gono.

Bezug
                
Bezug
Differenzengleichung Ordnung k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:22 Fr 04.06.2010
Autor: ledun

ich hatte gerade auch die vermutung mit dem koeffizientenvergleich war mir nur nicht sicher - gut dass du diese ansicht gleich mal unterstützt - damit hat sich meine frage geklärt vielen dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]