www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzenquotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Differenzenquotient
Differenzenquotient < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzenquotient: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:04 So 24.10.2010
Autor: Count144

Aufgabe
Bestimmen Sie durch Betrachtung des Differenzenquotienten (lim h->0...) die Ableitungen der folgenden Funktion.

f(x) = [mm] \bruch{1}{\wurzel{1 + x^{2}}} [/mm]

Ich weiß, dass ich momentan viele Fragen stelle, aber momentan kommt halt vieles zusammen. Und fragen kann man ja immer, denk ich.

Da gibts mehrere Aufgaben, aber nur die kriege ich davon nicht hin.

[mm] \bruch{\bruch{1}{\wurzel{1+(x+h)^{2}}} - \bruch{1}{\wurzel{1+x^{2}}}}{h} [/mm]

Wie kann man den vereinfachen?

        
Bezug
Differenzenquotient: Hauptnenner bilden
Status: (Antwort) fertig Status 
Datum: 00:06 So 24.10.2010
Autor: Loddar

Hallo Count!


Bilde im Zähler den Hauptnenner der beiden "kleinen" Brüche und fasse zusammen.


Gruß
Loddar



Bezug
                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 So 24.10.2010
Autor: Count144

Der Hauptnenner wäre dann aber doch (nur um sicher zu gehn ;))

[mm] \wurzel{1 + x^{2} + xh + h^{2} + x^{2} + x^{4} + x^{3}h + h^{2}x^{2}} [/mm]

Bezug
                        
Bezug
Differenzenquotient: nicht ausmultiplizieren
Status: (Antwort) fertig Status 
Datum: 00:12 So 24.10.2010
Autor: Loddar

Hallo Count!


Um Himmels willen! Bitte nicht ausmultiplizieren, da mchst du es nur unnötig kompliziert.

Ich habe Deinen Vorschlag jetzt nicht nachgerechnet.


Gruß
Loddar



Bezug
                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 So 24.10.2010
Autor: Count144

Kannst du mir denn grob sagen, wies sonst geht? Mir fällt grad nichts anderes ein.

Bezug
                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 So 24.10.2010
Autor: schachuzipus

Hallo Count,

mache erstmal im Zähler gleichnamig, schreibe [mm] \bruch{\bruch{1}{\wurzel{1+(x+h)^{2}}} - \bruch{1}{\wurzel{1+x^{2}}}}{h}=\frac{1}{h}\cdot{}\frac{\sqrt{1+x^2}-\sqrt{1+(x+h)^2}}{\sqrt{1+(x+h)^2}\cdot{}\sqrt{1+x^2}}[/mm]

Nun erweitere mit [mm]\sqrt{1+x^2}\red{+}\sqrt{1+(x+h)^2}[/mm]

Dann bekommst du im Zähler mit der 3.binomischen Formel die Wurzeln weg.

Im Nenner nicht ausmultiplizieren, sondern [mm]\sqrt{...}\cdot{}\sqrt{...}\cdot{}(\sqrt{1+x^2}+\sqrt{1+(x+h)^2})[/mm] stehenlassen.

Dann kannst du im Zähler h ausklammern und gegen das [mm]\frac{1}{h}[/mm] wegkürzen.

Danach [mm]h\to 0[/mm]

Gruß

schachuzipus


Bezug
                                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 So 24.10.2010
Autor: Count144

Nach all dem dürfte im Zähler nur noch x stehen. Und im Nenner ein Wurzelausdruck. Man kann den vereinfachen, aber muss man doch nicht unbedingt oder?

Bezug
                                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 So 24.10.2010
Autor: schachuzipus

Hallo nochmal,


> Nach all dem dürfte im Zähler nur noch x stehen. [notok]



Rechne mal nur den Zähler vor!

Ich komme erstmal auf [mm]-2xh-h^2[/mm], also [mm]h(-2x-h)[/mm]

Das kannst du dann gegen das [mm]\frac{1}{h}[/mm] kürzen.

Machst du dann den Grenzübergang [mm]h\to 0[/mm], kannst du anschließend gar noch die 2 wegkürzen, aber das ist ein weiter Weg und ich vermute stark, dass du dort noch nicht angekommen bist

> Und im
> Nenner ein Wurzelausdruck. Man kann den vereinfachen, aber
> muss man doch nicht unbedingt oder?


Nee, den Nenner bloß so lassen, da passiert ja nach dem Erweitern nun nichts Böses mehr für [mm]h\to 0[/mm]

Gruß

schachuzipus


Bezug
                                                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 So 24.10.2010
Autor: Count144

Danke ;)

Also, hab nochmal nachgerechnet.

Hab jetzt raus:

[mm] \bruch{-2x -h}{\wurzel{1+(x+h)^{2}} \* \wurzel{1+x^{2}} \* (\wurzel{1+x^{2}} + \wurzel{1+(x+h)^{2}})} [/mm]

Hmm..was kann ich noch machen?

Bezug
                                                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 So 24.10.2010
Autor: schachuzipus

Hallo nochmal,


> Danke ;)
>  
> Also, hab nochmal nachgerechnet.
>  
> Hab jetzt raus:
>  
> [mm]\bruch{-2x -h}{\wurzel{1+(x+h)^{2}} \* \wurzel{1+x^{2}} \* (\wurzel{1+x^{2}} + \wurzel{1+(x+h)^{2}})}[/mm] [ok]

Das sieht sehr gut aus!

>  
> Hmm..was kann ich noch machen?

Na, was schreibe ich denn seit ner halben Stunde?

Mache nun endlich den Grenzprozess [mm] $h\to [/mm] 0$

Jetzt kann nix mehr passieren; das anfängliche Problem bei direktem Grenzübergang war das Teilen durch 0, das ist hier nun nicht mehr vorhanden!

Also: was passiert nun für [mm] $h\to [/mm] 0$?

Bald haste es geschafft ;-)

Gruß

schachuzipus


Bezug
                                                                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:59 So 24.10.2010
Autor: Count144

Für h->0 müsste folgendes da stehn:

[mm] \bruch{-2x}{\wurzel{1+x^{2}} \* \wurzel{1+x^{2}} \* (\wurzel{1+x^{2}} + \wurzel{1+x^{2}})} [/mm]

Und das ist jetzt das Ergebnis? Der Nenner kann also so bleiben?

Bezug
                                                                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 So 24.10.2010
Autor: schachuzipus

Hallo nochmal,


> Für h->0 müsste folgendes da stehn:
>  
> [mm]\bruch{-2x}{\wurzel{1+x^{2}} \* \wurzel{1+x^{2}} \* (\wurzel{1+x^{2}} + \wurzel{1+x^{2}})}[/mm] [daumenhoch]
>  
> Und das ist jetzt das Ergebnis? Der Nenner kann also so
> bleiben?

Klar kann er das, es sei denn, du magst es kompakter:

Das Produkt der beiden Wurzeln am Anfang ergibt [mm]1+x^2[/mm]

In der Klammer steht [mm]2\sqrt{1+x^2}[/mm]

Insgesamt im Nenner also [mm]2(1+x^2)^{\frac{3}{2}}[/mm]

Und die 2 kannst du auch noch kürzen - wie oben versprochen ;-)

Gruß

schachuzipus


Bezug
                                                                                                
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 So 24.10.2010
Autor: Count144

Super, das versteh ich ;) Danke vielmals.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]