Differenzialrechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Es ist jener Drehzylinder zu bestimmen, der bei gegebenem Umfang U=12 des Achsenschnittes das größte Volumen besitzt.
Lösung: r=h=2 |
hallo!
Ich sitze seit über einer stunde an dem beispiel und verstehe es einfach nicht.
(Man muss ja immer eine Zielfunktion und eine Nebenbedingung bestimmen. Anschließend die Lösung der Nebenbedingung in die ZF einsetzen , die erste Ableitung bilden, und 0 setzen. Dann eine Variable ausrechnen und anschließend auf die 2. schließen.)
also der achsenschnitt ist mal ein rechteck hat die prof gesagt. aber ich weiß überhaupt nicht, wie ich damit beginnen soll, was der umfang soll und wie ich auf NB komme
es wäre echt nett, wenn mir jemand bei dem bsp helfen könnte! ich muss es morgen abgeben und sie wird immer total sauer, wenn man etwas nicht hat...danke schonmal
lg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo thesi1990!
> Es ist jener Drehzylinder zu bestimmen, der bei gegebenem
> Umfang U=12 des Achsenschnittes das größte Volumen besitzt.
>
> Lösung: r=h=2
> hallo!
>
> Ich sitze seit über einer stunde an dem beispiel und
> verstehe es einfach nicht.
>
> (Man muss ja immer eine Zielfunktion und eine
> Nebenbedingung bestimmen. Anschließend die Lösung der
> Nebenbedingung in die ZF einsetzen , die erste Ableitung
> bilden, und 0 setzen. Dann eine Variable ausrechnen und
> anschließend auf die 2. schließen.)
>
> also der achsenschnitt ist mal ein rechteck hat die prof
> gesagt. aber ich weiß überhaupt nicht, wie ich damit
> beginnen soll, was der umfang soll und wie ich auf NB
> komme
>
> es wäre echt nett, wenn mir jemand bei dem bsp helfen
> könnte! ich muss es morgen abgeben und sie wird immer total
> sauer, wenn man etwas nicht hat...danke schonmal
> lg
Ich habe das Wort "Achsenschnitt" noch nie gehört - was soll das sein? Und bist du sicher, dass das auch bei einem Zylinder ein Rechteck ist? Vielleicht hat sie das in einem anderen Zusammenhang gesagt?
Aber die Zielfunktion ist hier doch das Volumen, denn das soll ja maximal sein. Und die Nebenbedingung ist der Umfang, wobei ich ja leider nicht weiß, was der Achsenschnitt sein soll. Oder vielleicht weiß ich auch nicht, was ein Drehzylinder ist - ich stelle mir da einfach einen Zylinder vor mit einem Kreis als Grundfläche, also so was hier.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:47 Mi 14.02.2007 | Autor: | thesi1990 |
hallo, danke schon mal für deine antwort!
ja also der achsenschnitt ist ein rechteck. drehzylinder ist ein kreiszylinder wie auf dem bild.
sie hat eine skizze gemacht. da ist ein aufrechtes rechteck. oben kürzere seite --> die hat sie als 2r bezeichnet und die andere seite als h
lg
|
|
|
|
|
Hallo thesi1990!
> Es ist jener Drehzylinder zu bestimmen, der bei gegebenem
> Umfang U=12 des Achsenschnittes das größte Volumen besitzt.
>
> Lösung: r=h=2
Also, wie gesagt, die Zielfunktion ist das Volumen: [mm] V(r,h)=\pi r^2*h [/mm] und die Nebenbedingung ist doch, dass der Umfang dieses Rechtecks 12 beträgt. Du hast ja gesagt, dass die Seitenlängen 2r und h sind, demnach ist der Umfang U=2*2r+2h=4r+2h und das =12. Löse die Nebenbedingung nach ha fu und setze das in die Zielfunktion ein, ableiten, =0 setzen und so weiter ergibt genau das angegebene Ergebnis.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Mi 14.02.2007 | Autor: | thesi1990 |
danke sehr!!!
ich werd das jetzt mal so versuchen und schaun ob das richtige rauskommt. wenn ich bei was hänge, kann ich dich dann noch was fragen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:32 Mi 14.02.2007 | Autor: | thesi1990 |
ok danke. also ich hab jetzt die Nb nach h aufgelöst:
u=4r+h
h=u-4r
--> h=12-4r
in die ZF eingesetzt: V=pi [mm] *r^2*(12-4r)
[/mm]
das muss ich ja ableiten. aba fällt das pi weg?
ohne pi wärs dann V'(h) =2r*(-4) oder??
und mit dem null setzen is dass dann auch nciht so einfahc find ich
sry dass ich solche fragen stelle, aber wir haben dass erst vor 2 stunden begonnen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:47 Mi 14.02.2007 | Autor: | Bastiane |
Hallo thesi1990!
> ok danke. also ich hab jetzt die Nb nach h aufgelöst:
>
> u=4r+h
Also, du solltest aber schon die Formeln verstehen. Hatte mich nämlich leider vertippt, der Umfang ergibt sich natürlich als U=4r+2h! Demnach musst du deine anderen Umformungen natürlich nochmal überarbeiten.
> h=u-4r
> --> h=12-4r
>
> in die ZF eingesetzt: V=pi [mm]*r^2*(12-4r)[/mm]
>
> das muss ich ja ableiten. aba fällt das pi weg?
Nein, multiplikative Konstanten fallen beim Ableiten nicht weg. Lass dich von so komischen "Zahlen" wie [mm] \pi [/mm] nicht verwirren, die sind genau wie anderen Zahlen. Und Pi kannst du mit dem Formeleditor schreiben, klick einfach auf meine Formel, dann siehst du, wie.
> ohne pi wärs dann V'(h) =2r*(-4) oder??
Nein, wenn du es so ausrechnen möchtest, musst du die Produktregel anwenden. Aber einfacher ist's, wenn du die Klammer einfach ausmultiplizierst.
> und mit dem null setzen is dass dann auch nciht so einfahc
> find ich
Doch, klammer dann einfach das r aus, dann hast du ein Produkt, und das kann nur dann =0 sein, wenn einer der beiden Faktoren =0 ist.
> sry dass ich solche fragen stelle, aber wir haben dass erst
> vor 2 stunden begonnen.
Naja, dafür kam mir deine erste Erklärung, wie man das allgemein macht in deiner Ausgangsfrage aber sehr gut vor. . Und Ableiten und Gleichungen lösen, das lernt man doch schon vorher!?
Aber das Forum ist ja zum Fragen da, allerdings solltest du Fragen demnächst auch wieder als Fragen kenntlich machen.
Viele Grüße
Bastiane
|
|
|
|
|
ja stimmt schon, dass man ableitungen und gleichungen vorher lernt. aber es waren ja jetzt fereien, da hab ich wieder die hälfte vergessen und wir beschäftigen uns mit der differentialrechnung noch nciht soo lange. gehn halt leider ziemlich schnell mit dem stoff voran. extremwertaufgaben haben wir halt erst kürzlich begonnen aber naja.
ja ich weiß ich hab mir schon gedacht 2 h aber ich wollte es halt so machen, wie du es mir gesagt hast.
also: h=6-2r
--> V= pi * [mm] r^2 [/mm] * (6-2r)
trotzdem weiß ich jetzt nicht, wei ich dass ableiten muss und 0 setze um r rauszubekommen. könntest du mir bitte nur das eine rechnen, dann kann ichs alleine und ich sitz schon so lang an dem bsp rum und muss noch für nebenfächer lernen heute.
|
|
|
|