www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenDifferenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Differenzierbar
Differenzierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbar: Idee
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 10.02.2012
Autor: anabiene

Aufgabe
$ I=(a,b) $

$ [mm] f\in C^0(I) [/mm] $

$ [mm] b:I^{\star}\to [/mm] I $ ist differenzierbar

$ [mm] \alpha \in [/mm] I $

Zeige, $ [mm] {\star}:I^{\star}\to \IR [/mm] ,\ [mm] \star(t)=\integral_{\alpha }^{b(t)}{f(x) dx} [/mm] $ ist differenzierbar

Ich bin allein schon von diesen vorraussetzungen verwirrt... Hat mir jemand eine idee wie ich das anstellen kann?

        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Fr 10.02.2012
Autor: rainerS

Hallo!

> [mm]I=(a,b)[/mm]
>  
> [mm]f\in C^0(I)[/mm]
>  
> [mm]b:I^{\star}\to I[/mm] ist differenzierbar
>  
> [mm]\alpha \in I[/mm]
>  
> Zeige, [mm]{\star}:I^{\star}\to \IR ,\ \star(t)=\integral_{\alpha }^{b(t)}{f(x) dx}[/mm]
> ist differenzierbar
>  Ich bin allein schon von diesen vorraussetzungen
> verwirrt... Hat mir jemand eine idee wie ich das anstellen
> kann?

Tipp: Nimm dir eine Stammfunktion von f:

  [mm] F(u) = \integral_{\alpha }^{u}{f(x) dx}[/mm]

und drücke [mm] $\star$ [/mm] damit aus.

Viele Grüße
   Rainer

Bezug
                
Bezug
Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Fr 10.02.2012
Autor: anabiene

kurz eine vllt etwas blöde zwischenfrage:

$ [mm] \integral_{\alpha }^{u}{f(x) dx} [/mm] $ ist doch das gleiche wie $ [mm] \integral_{}{}{f(u) du} [/mm] $ oder?

Bezug
                        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 10.02.2012
Autor: schachuzipus

Hallo anabiene,


> kurz eine vllt etwas blöde zwischenfrage:
>  
> [mm]\integral_{\alpha }^{u}{f(x) dx}[/mm] ist doch das gleiche wie  [mm]\integral_{}{}{f(u) du}[/mm] oder?

Nein, wieso sollte das so sein?


Ist [mm]F[/mm] eine Stammfunktion von [mm]f[/mm], so ist [mm]\int\limits_{\alpha}^{u}f(x) \ dx}=F(u)-F(\alpha)[/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Fr 10.02.2012
Autor: anabiene

danke,

aber dann müsste doch $ [mm] \integral_{\alpha }^{u}{f(x) dx} [/mm] = F(u) - [mm] F(\alpha [/mm] ) $ sein und nicht $ F(u) = [mm] \integral_{\alpha }^{u}{f(x) dx} [/mm] $

oder?

Bezug
                                        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 10.02.2012
Autor: leduart

Hallo
wenn f(u) eine Funktion von u ist, ist auch f(u)+r eine Funktion von u, nur eben ne andere. f'(u) ist fuer beide fkt. dasselbe.
Gruss leduart

Bezug
                                                
Bezug
Differenzierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Mo 20.02.2012
Autor: anabiene

uhhh das ist mir peinlich, ich hab mich noch gar nicht bedankt.

Dankeschön [grins]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]