www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Fr 18.04.2014
Autor: rollroll

Aufgabe
Seien [mm] f_1, f_2, [/mm] ..., [mm] f_n [/mm] differenzierbare Funktionen und sei [mm] \pi:\IR^{n}\to\IR [/mm] eine lineare Abbildung.
Zeige, dass die Funktion [mm] g:\IR\to\IR, x\to\pi((f_1(x),...,f_n(x))) [/mm] differenzierbar ist und berechne g'.


Hallo.

folgt die Differenzierbarkeit nicht unmittelbar aus der Kettenregel der Differenzialrechnung? Wäre g' dann nicht [mm] \pi'*f_1'(x)*...*f_n'(x) [/mm] ?

Differenzialrechnung im [mm] \IR^n [/mm] haben wir eigentlich auch noch gar nicht...

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Fr 18.04.2014
Autor: fred97


> Seien [mm]f_1, f_2,[/mm] ..., [mm]f_n[/mm] differenzierbare Funktionen und
> sei [mm]\pi:\IR^{n}\to\IR[/mm] eine lineare Abbildung.
>  Zeige, dass die Funktion [mm]g:\IR\to\IR, x\to\pi((f_1(x),...,f_n(x)))[/mm]
> differenzierbar ist und berechne g'.
>  
> Hallo.
>  
> folgt die Differenzierbarkeit nicht unmittelbar aus der
> Kettenregel der Differenzialrechnung?

Ja

> Wäre g' dann nicht
> [mm]\pi'*f_1'(x)*...*f_n'(x)[/mm] ?

Das stimmt so nicht !


>  
> Differenzialrechnung im [mm]\IR^n[/mm] haben wir eigentlich auch
> noch gar nicht...


Beachte: es gibt [mm] a_n,...,a_n \in \IR [/mm] mit

[mm] \pi(x_1,...,x_n)=a_1x_1+....+a_nx_n [/mm]


FRED

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 18.04.2014
Autor: rollroll

Danke schon mal!

Wie kann ich denn den Beweis, dass g differenzierbar ist mathematisch korrekt aufschreiben? Es reicht wohl nicht, wenn ich hin schreibe, dass das aus der Kettenregel folgt...

Für die Ableitung bräuchte ich noch einen Tipp. Müsste man noch vor jedes f' das entsprechende [mm] a_i [/mm] schreiben?



Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Fr 18.04.2014
Autor: fred97

[mm] \pi (f_1(x),...,f_n(x))=a_1f_1f(x)+...+a_nf_n(x) [/mm]

FRED

Bezug
                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 18.04.2014
Autor: rollroll

Also: [mm] a_1f_1'(x) [/mm] + ... + [mm] a_nf_n'(x)? [/mm]

Bezug
                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 18.04.2014
Autor: fred97


> Also: [mm]a_1f_1'(x)[/mm] + ... + [mm]a_nf_n'(x)?[/mm]  

Ja

FRED


Bezug
                                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Fr 18.04.2014
Autor: rollroll

Super!

Und wie kann ich jetzt mathematisch korrekt beweisen, dass g diffbar ist?

Bezug
                                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 18.04.2014
Autor: fred97


> Super!
>  
> Und wie kann ich jetzt mathematisch korrekt beweisen, dass
> g diffbar ist?

Summen und skalare Vielfache differenzierbarer Funktionen sind differenzierbar.

Hattet Ihr das nicht ?

FRED


Bezug
                                                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Fr 18.04.2014
Autor: rollroll

Muss man nicht noch irgendwo berücksichtigen dass es sich um lineare Abbildungen des [mm] IR^n [/mm] handelt?

Bezug
                                                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Sa 19.04.2014
Autor: fred97


> Muss man nicht noch irgendwo berücksichtigen dass es sich
> um lineare Abbildungen des [mm]IR^n[/mm] handelt?  

Das haben wir doch schon mit



$ [mm] \pi(x_1,...,x_n)=a_1x_1+....+a_nx_n [/mm] $


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]