www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: bei einer Funktion
Status: (Frage) beantwortet Status 
Datum: 22:45 So 27.05.2007
Autor: KnockDown

Aufgabe
Untersuchen Sie, ob die Untenstehende Funktion differenzierbar ist, und bestimmen Sie gegebenenfalls die zugehörige Ableitung.

$f: [mm] \IR_{>0} \to \IR$ [/mm]

[mm] $f(x)=\wurzel[5]{6x^7+\bruch{1}{x^3}}$ [/mm]

Hi,

ich habe hier eine Aufgabe bei der ich nicht weiß wie ich anfangen soll.

Bisher habe ich Funktionen mithilfe des []Differenzenquotient auf Differenzierbarkeit überprüft. Aber ich habe das bisher immer an einer bestimmten Stelle wie [mm] $x_0=0$. [/mm] Bei dieser Aufgabe ist keine Stelle gegeben, wie muss ich dann vorgehen?

Kann man eine Funktion allgemein auf Differenzierbarkeit überprüfen und nicht nur an einer bestimmten stelle?


Mein Ansatz:

Ich würde erstmal vorab prüfen ob die Funktion stetig ist, denn nur wenn eine Funktion stetig ist kann sie überhaupt differenzierbar sein. Stimmt das soweit?

Um auf Stetigkeit zu prüfen, aber ich weiß nicht mehr wie das genau geht.



Danke für die Hilfe.



Grüße Thomas


        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 So 27.05.2007
Autor: leduart

Hallo
Summe, produkt und Komposition von differenzierbaren fkt. sind wieder differenzierbar. Habt ihr sowas nicht gehabt?
Dann ist das Unter der Wurzel für x>0 sicher ddfb. und hoch 1/5 auch und schon bist du fertig.
Gruss leduart

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Mo 28.05.2007
Autor: KnockDown


> Hallo
>  Summe, produkt und Komposition von differenzierbaren fkt.
> sind wieder differenzierbar. Habt ihr sowas nicht gehabt?
>  Dann ist das Unter der Wurzel für x>0 sicher ddfb. und
> hoch 1/5 auch und schon bist du fertig.
>  Gruss leduart


Hi Leduart,

ja stimmt das hat mir gestern ein guter Freund auch gesagt! Das hab ich mal gehört hatte es vergessen!

Danke!

Kann man die Aufgabe:

Untersuchen Sie, ob die Untenstehende Funktion differenzierbar ist, und bestimmen Sie gegebenenfalls die zugehörige Ableitung.

$f: [mm] \IR_{>0} \to \IR$ [/mm]

[mm] $f(x)=\wurzel[5]{6x^7+\bruch{1}{x^3}}$ [/mm]

auch mithilfe des des Differenzenquotient berechnen (da unser Übungsleiter meine, wenn wir auf Differenzierbarkeit prüfen müssen, dann werden sie in die Aufgabe schreiben "nur mit Differenzenquotient berechnen.

Diese Aufgabe habe ich mir allerdings von dem Mathejahrgang 1 jahr vor uns herausgesucht und bin mir deshalb nicht sicher, ob man das hier überhaupt mit dem Differenzenquotient berechnen berechnen kann da ich hier kein $x_=...$ gegeben habe, oder geht das auch ohne die Stelle anzugeben an der man auf Differenzierbarkeit prüfen soll?


Danke für die Hilfe.


Grüße Thomas

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Mo 28.05.2007
Autor: Hund

Hallo,

man kann hier auch einfach eine Stelle [mm] x_{0} [/mm] betrachten und den Differenzenquotienten berechnen und daraus die Ableitung in [mm] x_{0}. [/mm] Allerdings ist das bei dieser Aufgabe sehr kompliziert und daher denke ich, dass das hier gedacht ist, mit den Regeln der Differentialrechnung zu arbeiten.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]